Vol. 14 No. 3 (2025)
Special Issue 13th AIEAA Conference

Factors influencing land rental market participation: A case study in Northern Ireland

Adewale H. Adenuga
Gibson Institute, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
Bio
Claire Jack
Economics Research Branch, Agri-food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
Bio

Published 2025-06-07

Keywords

  • land,
  • rental market ,
  • sustainability,
  • conacre,
  • multinomial logit model

How to Cite

Adenuga, A. H., & Jack, C. (2025). Factors influencing land rental market participation: A case study in Northern Ireland. Bio-Based and Applied Economics, 14(3), 109–122. https://doi.org/10.36253/bae-16400

Abstract

Agricultural land mobility through an efficient land rental market has been shown to contribute to the productive and sustainable utilisation of land, by facilitating the transfer of land from less productive farmers to more productive farmers. However, this is not the case in Northern Ireland where the sale of agricultural land is limited with a constrained tenanted sector. The objective of this study is to analyse the factors influencing participation in the land rental market in Northern Ireland. To achieve our objective, data from 1466 farmland owners was analysed using principal component analysis (PCA) and multinomial logistic regression model. The results show that land rental market participation is impacted by motivational and socioeconomic factors. The study recommends the development of schemes that support the early and comfortable retirement of older farmers to increase the access of young farmers to land and improve the land rental market.

References

  1. Abay, K. A., Chamberlin, J., & Berhane, G. (2021). Are land rental markets responding to rising population pressures and land scarcity in sub-Saharan Africa? Land use policy, 101, 105139. https://doi.org/https://doi.org/10.1016/j.landusepol.2020.105139
  2. Adenuga, A. H., Davis, J., Hutchinson, G., Patton, M., & Donnellan, T. (2020). Modelling environmental technical efficiency and phosphorus pollution abatement cost in dairy farms. Science of The Total Environment, 714, 136690. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.136690
  3. Adenuga, A. H., Jack, C., Ashfield, A., & Wallace, M. (2021). Assessing the Impact of Participatory Extension Programme Membership on Farm Business Performance in Northern Ireland. Agriculture, 11(10), 949. https://www.mdpi.com/2077-0472/11/10/949
  4. Adenuga, A. H., Jack, C., & McCarry, R. (2021). The Case for Long-Term Land Leasing: A Review of the Empirical Literature. Land, 10(3), 238. https://www.mdpi.com/2073-445X/10/3/238
  5. Adenuga, A. H., Jack, C., & McCarry, R. (2023). Investigating the Factors Influencing the Intention to Adopt Long-Term Land Leasing in Northern Ireland. Land, 12(3), 649. https://www.mdpi.com/2073-445X/12/3/649
  6. Adenuga, A. H., Jack, C., McCarry, R., & Caskie, P. (2023). Barriers and Enablers of Long-term Land Leasing: a Case Study of Northern Ireland. EuroChoices, 22(2), 20-27. https://doi.org/10.1111/1746-692X.12404
  7. Bizimana, C. (2011). Determinants of land rental markets: Theory and econometric evidence from rural Rwanda. Journal of Development and Agricultural Economics, 3(4), 183-189.
  8. Bradfield, T., Butler, R., Dillon, E., Hennessy, T., & Kilgarriff, P. (2021). The Effect of Land Fragmentation on the Technical Inefficiency of Dairy Farms. Journal of Agricultural Economics, 72(2), 486-499. https://doi.org/10.1111/1477-9552.12413
  9. Bradfield, T., Butler, R., Dillon, E. J., & Hennessy, T. (2020). The factors influencing the profitability of leased land on dairy farms in Ireland. Land use policy, 95, 104649.
  10. Bradfield, T., Butler, R., Dillon, E. J., Hennessy, T., & Loughrey, J. (2023). Attachment to land and its downfalls: Can policy encourage land mobility? Journal of Rural Studies, 97, 192-201. https://doi.org/10.1016/j.jrurstud.2022.12.014
  11. Bradfield, T., Butler, R., Dillon, E. J., Hennessy, T., & Loughrey, J. (2023). The impact of long-term land leases on farm investment: Evidence from the Irish dairy sector. Land Use Policy, 126, 106553
  12. Carpita, M., Sandri, M., Simonetto, A., & Zuccolotto, P. (2014). Chapter 14 - Football Mining with R. In Y. Zhao & Y. Cen (Eds.), Data Mining Applications with R (pp. 397-433). Academic Press. https://doi.org/10.1016/B978-0-12-411511-8.00015-3
  13. Caskie, P., Davis, J., & Wallace, M. (2001). Targeting disadvantage in agriculture. Journal of Rural Studies, 17(4), 471-479. https://doi.org/10.1016/S0743-0167(01)00016-X
  14. Che, Y. (2016). Off-farm employments and land rental behavior: evidence from rural China. China Agricultural Economic Review, 8(1), 37-54. https://doi.org/10.1108/caer-09-2014-0086
  15. DAERA. (2023a). Statistical review of Northern Ireland agriculture 2022. Policy, Economics and Statistics Division, Department of Agriculture, Environment and Rural Affairs. https://www.daera-ni.gov.uk/sites/default/files/publications/daera/Stats%20Review%20Internal%20for%202022%20ONLINE.pdf
  16. DAERA. (2023b). The Agricultural Census in Northern Ireland. Belfast: Department of Agriculture Environment and Rural Affairs Retrieved from https://www.daera-ni.gov.uk/sites/default/files/publications/daera/Agricultural%20Census%202023%20Publication.pdf
  17. Daly, A. (1987). Estimating “tree” logit models. Transportation Research Part B: Methodological, 21(4), 251-267. https://doi.org/10.1016/0191-2615(87)90026-9
  18. Dang, H. D., & Pham, T. T. (2022). Predicting Contract Participation in the Mekong Delta, Vietnam: A Comparison Between the Artificial Neural Network and the Multinomial Logit Model. Journal of Agricultural & Food Industrial Organization, 20(2), 135-147. https://doi.org/10.1515/jafio-2020-0023
  19. Daniele, B.-C. (2024). The farm succession effect on farmers’ management choices. Land use policy, 137, 107014. https://doi.org/10.1016/j.landusepol.2023.107014
  20. Deininger, K., & Jin, S. (2008). Land sales and rental markets in transition: Evidence from rural Vietnam. Oxford bulletin of Economics and Statistics, 70(1), 67-101.
  21. Diriye, A. W., Jama, O. M., Diriye, J. W., & Abdi, A. M. (2022). Public preference for sustainable land use policies – Empirical results from multinomial logit model analysis. Land use policy, 114, 105975. https://doi.org/10.1016/j.landusepol.2022.105975
  22. Dow, J. K., & Endersby, J. W. (2004). Multinomial probit and multinomial logit: a comparison of choice models for voting research. Electoral studies, 23(1), 107-122.
  23. Duressa, D. S. (2021). Multinomial Logistic Regression Analysis of Livelihood Diversification Strategies of Rural Farm Households: A Case of Limmu District, East Wollega Zone of Oromiya Regional State, Ethiopia.
  24. Eurostat. (2022). Farm tenure. European Commission. Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farm_tenure
  25. Gensch, D. H., & Recker, W. W. (1979). The Multinomial, Multiattribute Logit Choice Model. Journal of Marketing Research, 16(1), 124-132. https://doi.org/10.1177/002224377901600117
  26. Geoghegan, C., Kinsella, A., & O’Donoghue, C. (2021). The effect of farmer attitudes on openness to land transactions: evidence for Ireland. Bio-based and Applied Economics, 10(2), 153-168.
  27. Grant, S. W., Hickey, G. L., & Head, S. J. (2019). Statistical primer: multivariable regression considerations and pitfalls. European Journal of Cardio-Thoracic Surgery, 55(2), 179-185.
  28. Harris, L. (2022). Mixed fortune for Wales and NI land despite high demand. Farmers Weekly. https://www.fwi.co.uk/business/markets-and-trends/land-markets/mixed-fortune-for-wales-and-ni-land-despite-high-demand#:~:text=Usually%2C%20less%20than%201%25%20of,case%20in%202022%2C%20he%20said.
  29. Howley, P. (2015). The happy farmer: The effect of nonpecuniary benefits on behavior. American Journal of Agricultural Economics, 97(4), 1072-1086.
  30. Howley, P., Buckley, C., Donoghue, C. O., & Ryan, M. (2015). Explaining the economic ‘irrationality’of farmers’ land use behaviour: the role of productivist attitudes and non-pecuniary benefits. Ecological Economics, 109, 186-193.
  31. Huy, H. T., Lyne, M., Ratna, N., & Nuthall, P. (2016). Drivers of transaction costs affecting participation in the rental market for cropland in Vietnam. Australian Journal of Agricultural and Resource Economics, 60(3), 476-492. https://doi.org/10.1111/1467-8489.12149
  32. Jack, C., Adenuga, A. H., Ashfield, A., & Wallace, M. (2020). Investigating the Drivers of Farmers’ Engagement in a Participatory Extension Programme: The Case of Northern Ireland Business Development Groups. Sustainability, 12(11), 4510.
  33. Kung, J. K. S. (2002). Off-farm labor markets and the emergence of land rental markets in rural China [Article; Proceedings Paper]. Journal of Comparative Economics, 30(2), 395-414. https://doi.org/10.1006/jcec.2002.1780
  34. Lapple, D., & Kelley, H. (2010). Understanding farmers’ uptake of organic farming: An application of the theory of planned behaviour.
  35. Läpple, D., & Kelley, H. (2013). Understanding the uptake of organic farming: Accounting for heterogeneities among Irish farmers. Ecological Economics, 88, 11-19. https://doi.org/10.1016/j.ecolecon.2012.12.025
  36. Li, C., Ma, W., Mishra, A. K., & Gao, L. (2020). Access to credit and farmland rental market participation: Evidence from rural China. China Economic Review, 63, 101523. https://doi.org/10.1016/j.chieco.2020.101523
  37. Little, R., Lyon, J., & Tsouvalis, J. (2023). The co-design of post-Brexit Agri-environmental policy—Focusing on environmental land management in England. Dr Ludivine Petetin and Dr Mary Dobbs, Authors of, 54.
  38. Long, J. S., & Freese, J. (2005). Regression Models for Categorical Outcomes Using Stata, 2nd Edn College Station. TX: Stata Press.[Google Scholar].
  39. Long, J. S., & Freese, J. (2006). Regression models for categorical dependent variables using Stata (Vol. 7). Stata press.
  40. Marks-Bielska, R. (2013). Factors shaping the agricultural land market in Poland. Land use policy, 30(1), 791-799.
  41. Marks-Bielska, R. (2021). Conditions underlying agricultural land lease in Poland, in the context of the agency theory. Land use policy, 102, 105251. https://doi.org/10.1016/j.landusepol.2020.105251
  42. McFadden, D. (1972). Conditional logit analysis of qualitative choice behavior.
  43. Mellon-Bedi, S., Descheemaeker, K., Hundie-Kotu, B., Frimpong, S., & Groot, J. C. J. (2020). Motivational factors influencing farming practices in northern Ghana. NJAS - Wageningen Journal of Life Sciences, 92, 100326. https://doi.org/10.1016/j.njas.2020.100326
  44. Min, S., Waibel, H., & Huang, J. (2017). Smallholder participation in the land rental market in a mountainous region of Southern China: Impact of population aging, land tenure security and ethnicity. Land use policy, 68, 625-637. https://doi.org/10.1016/j.landusepol.2017.08.033
  45. O’Kane, H., Ferguson, E., Kaler, J., & Green, L. (2017). Associations between sheep farmer attitudes, beliefs, emotions and personality, and their barriers to uptake of best practice: The example of footrot. Preventive veterinary medicine, 139, 123-133.
  46. Onofri, L., Trestini, S., & Mamine, F. (2023). Understanding agricultural land leasing in Ireland: a transaction cost approach. Agric Econ, 11. https://doi.org/10.1186/s40100-023-00254-x
  47. Osanya, J., Adam, R. I., Otieno, D. J., Nyikal, R., & Jaleta, M. (2020). An analysis of the respective contributions of husband and wife in farming households in Kenya to decisions regarding the use of income: A multinomial logit approach. Women’s Studies International Forum, 83, 102419. https://doi.org/10.1016/j.wsif.2020.102419
  48. Otieno, D. J. (2022). Determinants and Effects of Rural Households’ Participation in Land Markets on Agricultural Output and Food Security in Siaya County, Kenya.
  49. Ouattara, N. B., Xiong, X., Bakayoko, M., Bi, T. B. A. Y., Sedebo, D. A., & Ballo, Z. (2022). What Influences Rice Farmers’ Choices of Credit Sources in Côte d’Ivoire? An Econometric Analysis using the Multinomial Conditional Logit Model. Progress in Development Studies, 22(2), 149-173. https://doi.org/10.1177/14649934211066453
  50. Rahman, S. (2010). Determinants of agricultural land rental market transactions in Bangladesh [Article]. Land use policy, 27(3), 957-964. https://doi.org/10.1016/j.landusepol.2009.12.009
  51. Tesfay, M. (2023). Factors affecting renting in and renting out of land in a semi-arid economy of Tigrai, northern Ethiopia: a generalized random effect order probit model. Cogent Economics & Finance, 11(1), 2132649. https://doi.org/10.1080/23322039.2022.2132649
  52. Udimal, T. B., Peng, Z., & Guillaume, N. (2021). Farmland Lease Options in the Rural China: Key Determinants and Policy Implications. Asia-Pacific Journal of Rural Development, 31(2), 218-233. https://doi.org/10.1177/10185291211065228
  53. Vranken, L., & Swinnen, J. (2006). Land rental markets in transition: Theory and evidence from Hungary. World Development, 34(3), 481-500.
  54. Yasmin, I., Akram, W., Adeel, S., & Chandio, A. A. (2022). Non-adoption decision of biogas in rural Pakistan: use of multinomial logit model. Environmental Science and Pollution Research, 29(35), 53884-53905. https://doi.org/10.1007/s11356-022-19539-7
  55. Zhang, L., Cao, Y., & Bai, Y. (2022). The impact of the land certificated program on the farmland rental market in rural China. Journal of Rural Studies, 93, 165-175. https://doi.org/10.1016/j.jrurstud.2019.03.007
  56. Zhang, L., Feng, S., Heerink, N., Qu, F., & Kuyvenhoven, A. (2018). How do land rental markets affect household income? Evidence from rural Jiangsu, PR China. Land use policy, 74, 151-165.
  57. Zou, B., & Luo, B. L. (2018). Why the Uncertain Term Occurs in the Farmland Lease Market: Evidence from Rural China [Article]. Sustainability, 10(8), 15, Article 2813. https://doi.org/10.3390/su10082813
  58. Zou, B. L., Mishra, A. K., & Luo, B. L. (2020). Grain subsidy, off-farm labor supply and farmland leasing: Evidence from China. China Economic Review, 62, Article 101293. https://doi.org/10.1016/j.chieco.2019.04.001