Vol. 14 No. 2 (2025)
Full Research Articles

Impact of weather variability on crop yields and land use dynamics in Eastern India: Short- and long-term effects

Pratap Kumar Jena
Department of Economics, Maharaja Sriram Chandra Bhanjdeo University, Baripada, India
Kirtti Ranjan Paltasingh
Department of Economics, Ravenshaw University, Cuttack, India
Souryabrata Mohapatra
School of Liberal Arts, Indian Institute of Technology Jodhpur, Jheepasani, India
Ashok Mishra
Morrison School of Agribusiness, Arizona State University, Mesa, United States

Published 2025-06-26

Keywords

  • Climate change,
  • Crop yield response,
  • Land use intensity,
  • Panel ARDL model,
  • Odisha,
  • India
  • ...More
    Less

How to Cite

Jena, P. K., Paltasingh, K. R., Mohapatra, S., & Mishra, A. (2025). Impact of weather variability on crop yields and land use dynamics in Eastern India: Short- and long-term effects. Bio-Based and Applied Economics, 14(2), 31–49. https://doi.org/10.36253/bae-17008

Abstract

Weather variability disrupts food grain production and agricultural sustainability. While existing literature highlights the stationary relationship between weather variables and agricultural outcomes, it often overlooks their bearing on land use changes. This study investigates the dynamic effects of weather variations on crop yields, land use and intensity in Odisha, Eastern India, using district-level data from 2001-18. By employing a ‘panel auto-regressive distributive lag (P-ARDL) model, we assess long- and short-term relationships between weather parameters and agricultural yields. Results reveal a negative marginal impact of rainfall deviation on yield, ranging from -0.16 for wheat to -0.48 for green gram in the long term. In the short term, however, the marginal impact is positive for some pulses (green gram, black gram) and oilseeds (groundnuts). Weather variability has adversely affected the intensity of land use but has induced crop diversification in both the short and long term.

References

  1. Ahmed, N., Xinagyu, G., Alnafissa, M., Ali, A., and Ullah, H. (2025). Linear and non-linear impact of key agricultural components on greenhouse gas emissions. Scientific Reports, 15(1): 5314. https://doi.org/10.1038/s41598-025-88159-1 DOI: https://doi.org/10.1038/s41598-025-88159-1
  2. Ali, S., Ying, L., Shah, T., Tariq, A., Ali Chandio, A., and Ali, I. (2019). Analysis of the Nexus of CO2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach. Energies, 12(23): 4590. https://doi.org/10.3390/en12234590 DOI: https://doi.org/10.3390/en12234590
  3. Alvi, S., Roson, R., Sartori, M., and Jamil, F. (2021). An integrated assessment model for food security under climate change for South Asia. Heliyon, 7(4): e06707 https://doi.org/10.1016/j.heliyon.2021.e06707 DOI: https://doi.org/10.1016/j.heliyon.2021.e06707
  4. Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2): 95–96. https://doi.org/10.1007/s42398-019-00078-w DOI: https://doi.org/10.1007/s42398-019-00078-w
  5. Asogwa, J., Manasseh, C., Abada, F., Nwonye, G., Nwonye, N., Okanya, O., … Okoh, J. (2022). Effect of Climate Variability on Crop Production: Evidence from Selected Communities in Rivers State Nigeria. Journal of Xi’an Shiyou University, 18(3): 239–260. https://www.xisdxjxsu.asia/viewarticle.php?aid=781
  6. Barik, S. (2023). Odisha produces 13.606 million tonnes of food grains, highest production so far for state. The Hindu. https://www.thehindu.com/news/national/other-states/odisha-produces-13606-million-tonnes-of-food-grains-highest-production-so-far-for-state/article66899856.ece
  7. Basantaray, A. K., Paltasingh, K. R., and Birthal, P. S. (2022). Crop Diversification, Agricultural Transition and Farm Income Growth: Evidence from Eastern India. Italian Review of Agricultural Economics (REA), 77(3): 55–65. https://doi.org/10.36253/rea-13796 DOI: https://doi.org/10.36253/rea-13796
  8. Belcaid, K., and El Ghini, A. (2020). Measuring the Weather Variability Effects on the Agricultural Sector in Morocco. In J. Xu, S. E. Ahmed, F. L. Cooke, and G. Duca (Eds.), Proceedings of the Thirteenth International Conference on Management Science and Engineering Management (pp. 70–84). Cham. Springer International Publishing. https://doi.org/10.1007/978-3-030-21248-3_6 DOI: https://doi.org/10.1007/978-3-030-21248-3_6
  9. Belford, C., Huang, D., Ahmed, Y. N., Ceesay, E., and Sanyang, L. (2022). An economic assessment of the impact of climate change on the Gambia’s agriculture sector: A CGE approach. International Journal of Climate Change Strategies and Management, 15(3): 322–352. https://doi.org/10.1108/IJCCSM-01-2022-0003 DOI: https://doi.org/10.1108/IJCCSM-01-2022-0003
  10. Birthal, P. S., and Hazrana, J. (2019). Crop diversification and resilience of agriculture to climatic shocks: Evidence from India. Agricultural Systems, 173: 345–354. https://doi.org/10.1016/j.agsy.2019.03.005 DOI: https://doi.org/10.1016/j.agsy.2019.03.005
  11. Birthal, P. S., Hazrana, J., Negi, D. S., and Bhan, S. C. (2021). Climate change and land-use in Indian agriculture. Land Use Policy, 109: 105652. https://doi.org/10.1016/j.landusepol.2021.105652 DOI: https://doi.org/10.1016/j.landusepol.2021.105652
  12. Chandio, A. A., Jiang, Y., Rehman, A., and Rauf, A. (2020). Short and long-run impacts of climate change on agriculture: An empirical evidence from China. International Journal of Climate Change Strategies and Management, 12(2): 201–221. https://doi.org/10.1108/IJCCSM-05-2019-0026 DOI: https://doi.org/10.1108/IJCCSM-05-2019-0026
  13. Crofils, C., Gallic, E., and Vermandel, G. (2025). The dynamic effects of weather shocks on agricultural production. Journal of Environmental Economics and Management, 130: 103078. https://doi.org/10.1016/j.jeem.2024.103078 DOI: https://doi.org/10.1016/j.jeem.2024.103078
  14. Deressa, T. T. (2007). Measuring the economic impact of climate change on Ethiopian agriculture: Ricardian approach (Working Paper Series No. 4342). Washington D.C. The World Bank. http://documents.worldbank.org/curated/en/143291468035673156/Measuring-the-economic-impact-of-climate-change-on-Ethiopian-agriculture-Ricardian-approach DOI: https://doi.org/10.1596/1813-9450-4342
  15. Di Falco, S., and Veronesi, M. (2014). Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia. Environmental and Resource Economics, 57(4): 553–577. https://doi.org/10.1007/s10640-013-9696-1 DOI: https://doi.org/10.1007/s10640-013-9696-1
  16. Dudu, H., and Çakmak, E. H. (2018). Climate change and agriculture: An integrated approach to evaluate economy-wide effects for Turkey. Climate and Development, 10(3): 275–288. https://doi.org/10.1080/17565529.2017.1372259 DOI: https://doi.org/10.1080/17565529.2017.1372259
  17. Duku, C., Zwart, S. J., and Hein, L. (2018). Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLOS ONE, 13(3): e0192642. https://doi.org/10.1371/journal.pone.0192642 DOI: https://doi.org/10.1371/journal.pone.0192642
  18. GOO. (2022). Odisha Economic Survey 2021-22. Cuttack. Directorate of Economics and Statistics Planning and Convergence Department, Government of Odisha. https://finance.odisha.gov.in/sites/default/files/2022-03/Economic%20Survey%20-%20Highlights.pdf
  19. Gouraram, P., Goyari, P., and Paltasingh, K. R. (2022). Rice ecosystem heterogeneity and determinants of climate risk adaptation in Indian agriculture: Farm-level evidence. Journal of Agribusiness in Developing and Emerging Economies, 14(2): 146–160. https://doi.org/10.1108/JADEE-03-2022-0044 DOI: https://doi.org/10.1108/JADEE-03-2022-0044
  20. Guntukula, R., and Goyari, P. (2020). Climate Change Effects on the Crop Yield and Its Variability in Telangana, India. Studies in Microeconomics, 8(1): 119–148. https://doi.org/10.1177/2321022220923197 DOI: https://doi.org/10.1177/2321022220923197
  21. Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M., … EL Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.925548 DOI: https://doi.org/10.3389/fpls.2022.925548
  22. Hashida, Y., and Lewis, D. J. (2022). Estimating welfare impacts of climate change using a discrete-choice model of land management: An application to western U.S. forestry. Resource and Energy Economics, 68: 101295. https://doi.org/10.1016/j.reseneeco.2022.101295 DOI: https://doi.org/10.1016/j.reseneeco.2022.101295
  23. Hoda, A., Gulati, A., Wardhan, H., and Rajkhowa, P. (2021). Drivers of Agricultural Growth in Odisha. In A. Gulati, R. Roy, and S. Saini (Eds.), Revitalizing Indian Agriculture and Boosting Farmer Incomes (pp. 247–278). Singapore. Springer Nature. https://doi.org/10.1007/978-981-15-9335-2_9 DOI: https://doi.org/10.1007/978-981-15-9335-2_9
  24. Im, K. S., Pesaran, M. H., and Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1): 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 DOI: https://doi.org/10.1016/S0304-4076(03)00092-7
  25. IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Geneva. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar4/wg2/
  26. IPCC. (2014). Point of Departure. In Climate Change 2014 – Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 1: Global and Sectoral Aspects (Vol. 1, pp. 169–194). Cambridge. Cambridge University Press. https://doi.org/10.1017/CBO9781107415379.006
  27. Kozicka, M., Tacconi, F., Horna, D., and Gotor, E. (2018). Forecasting cocoa yields for 2050 (p. 49). Rome. Bioversity International. https://hdl.handle.net/10568/93236
  28. Kyaw, Y., Nguyen, T. P. L., Winijkul, E., Xue, W., and Virdis, S. G. P. (2023). The Effect of Climate Variability on Cultivated Crops’ Yield and Farm Income in Chiang Mai Province, Thailand. Climate, 11(10): 204. https://doi.org/10.3390/cli11100204 DOI: https://doi.org/10.3390/cli11100204
  29. Lemi, T., and Hailu, F. (2019). Effects of Climate Change Variability on Agricultural Productivity. International Journal of Environmental Sciences & Natural Resources, 17(1): 1–7. https://doi.org/10.19080/IJESNR.2019.17.555953 DOI: https://doi.org/10.19080/IJESNR.2019.17.555953
  30. Levin, A., Lin, C.-F., and James Chu, C.-S. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics, 108(1): 1–24. https://doi.org/10.1016/S0304-4076(01)00098-7 DOI: https://doi.org/10.1016/S0304-4076(01)00098-7
  31. Lin, S.-S., Zhang, N., Xu, Y.-S., and Hino, T. (2020). Lesson Learned from Catastrophic Floods in Western Japan in 2018: Sustainable Perspective Analysis. Water, 12(9): 2489. https://doi.org/10.3390/w12092489 DOI: https://doi.org/10.3390/w12092489
  32. Liu, D., Mishra, A. K., and Ray, D. K. (2020). Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Science of The Total Environment, 748: 141431. https://doi.org/10.1016/j.scitotenv.2020.141431 DOI: https://doi.org/10.1016/j.scitotenv.2020.141431
  33. Mantziaris, S., Rozakis, S., Karanikolas, P., Petsakos, A., and Tsiboukas, K. (2024). Simulating farm structural change dynamics in Thessaly (Greece) using a recursive programming model. Bio-Based and Applied Economics, 13(4): 353–386. https://doi.org/10.36253/bae-14790 DOI: https://doi.org/10.36253/bae-14790
  34. Martin-Moreno, J. M., Garcia-Lopez, E., Guerrero-Fernandez, M., Alfonso-Sanchez, J. L., and Barach, P. (2025). Devastating “DANA” Floods in Valencia: Insights on Resilience, Challenges, and Strategies Addressing Future Disasters. Public Health Reviews, 46: 1608297. https://doi.org/10.3389/phrs.2025.1608297 DOI: https://doi.org/10.3389/phrs.2025.1608297
  35. Mendelsohn, R., Nordhaus, W. D., and Shaw, D. (1994). The Impact of Global Warming on Agriculture: A Ricardian Analysis. The American Economic Review, 84(4): 753–771. https://www.jstor.org/stable/2118029
  36. Mohapatra, S., Paltasingh, K. R., Peddi, D., Sahoo, D., Sahoo, A. K., and Mohanty, P. (2025). Evaluating Seasonal Weather Risks on Cereal Yield Distributions in Southern India. Journal of Quantitative Economics. https://doi.org/10.1007/s40953-025-00448-8 DOI: https://doi.org/10.2139/ssrn.5198802
  37. Mohapatra, S., Sharp, B., Sahoo, A. K., and Sahoo, D. (2023). Seasonal Weather Sensitivity of Staple Crop Rice in South India. In P. S. Duque de Brito, J. R. da Costa Sanches Galvão, P. Monteiro, R. Panizio, L. Calado, A. C. Assis, … V. S. Santos Ribeiro (Eds.), Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022) (pp. 130–146). Cham. Springer International Publishing. https://doi.org/10.1007/978-3-031-26849-6_15 DOI: https://doi.org/10.1007/978-3-031-26849-6_15
  38. Moniruzzaman, S. (2019). Crop diversification as climate change adaptation: How do bangladeshi farmers perform? Climate Change Economics, 10(02): 1950007. https://doi.org/10.1142/S2010007819500076 DOI: https://doi.org/10.1142/S2010007819500076
  39. Moulkar, R., and Peddi, D. (2023). Climate sensitivity of major crops yield in Telangana state, India. Journal of the Asia Pacific Economy, 29(4): 2023–2040. https://doi.org/10.1080/13547860.2023.2230007 DOI: https://doi.org/10.1080/13547860.2023.2230007
  40. Nugroho, A. D., Prasada, I. Y., and Lakner, Z. (2023). Comparing the effect of climate change on agricultural competitiveness in developing and developed countries. Journal of Cleaner Production, 406: 137139. https://doi.org/10.1016/j.jclepro.2023.137139 DOI: https://doi.org/10.1016/j.jclepro.2023.137139
  41. Opoku Mensah, S., Akanpabadai, T. A., Diko, S. K., Okyere, S. A., and Benamba, C. (2023). Prioritisation of climate change adaptation strategies by smallholder farmers in semi-arid savannah agro-ecological zones: Insights from the Talensi District, Ghana. Journal of Social and Economic Development, 25(1): 232–258. https://doi.org/10.1007/s40847-022-00208-x DOI: https://doi.org/10.1007/s40847-022-00208-x
  42. Paltasingh, K. R., and Goyari, P. (2015). Climatic Risks and Household Vulnerability Assessment: A Case of Paddy Growers in Odisha. Agricultural Economics Research Review, 28: 199–210. https://doi.org/10.5958/0974-0279.2015.00035.X DOI: https://doi.org/10.5958/0974-0279.2015.00035.X
  43. Pattanayak, A., and Kumar, K. S. K. (2021). Does weather sensitivity of rice yield vary across sub-regions of a country? Evidence from Eastern and Southern India. Journal of the Asia Pacific Economy, 26(1): 51–72. https://doi.org/10.1080/13547860.2020.1717300 DOI: https://doi.org/10.1080/13547860.2020.1717300
  44. Pattanayak, A., Kumar, K. S. K., and Anneboina, L. R. (2021). Distributional impacts of climate change on agricultural total factor productivity in India. Journal of the Asia Pacific Economy, 26(2): 381–401. https://doi.org/10.1080/13547860.2021.1917094 DOI: https://doi.org/10.1080/13547860.2021.1917094
  45. Pesaran, H. H., and Shin, Y. (1998). Generalised impulse response analysis in linear multivariate models. Economics Letters, 58(1): 17–29. https://doi.org/10.1016/S0165-1765(97)00214-0 DOI: https://doi.org/10.1016/S0165-1765(97)00214-0
  46. Pesaran, M. H., Shin, Y., and Smith, R. P. (1999). Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. Journal of the American Statistical Association, 94(446): 621–634. https://doi.org/10.2307/2670182 DOI: https://doi.org/10.1080/01621459.1999.10474156
  47. Prasada, D. V. P. (2020). Climate resilience and varietal choice: A path analytic model for rice in Bangladesh. Journal of Agribusiness in Developing and Emerging Economies, 12(1): 40–55. https://doi.org/10.1108/JADEE-09-2019-0135 DOI: https://doi.org/10.1108/JADEE-09-2019-0135
  48. Raihan, A., Muhtasim, D. A., Farhana, S., Hasan, M. A. U., Pavel, M. I., Faruk, O., … Mahmood, A. (2023). An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus, 9: 100179. https://doi.org/10.1016/j.nexus.2023.100179 DOI: https://doi.org/10.1016/j.nexus.2023.100179
  49. Raihan, A., and Tuspekova, A. (2022). Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: New evidence from Nepal. Energy Nexus, 7: 100113. https://doi.org/10.1016/j.nexus.2022.100113 DOI: https://doi.org/10.1016/j.nexus.2022.100113
  50. Ricardo, D. (1817). On the Principles of Political Economy, and Taxation. Cambridge. Cambridge University Press. https://doi.org/10.1017/CBO9781107589421
  51. Rout, H. K. (2021, November 27). 30 per cent of Odisha population is poor: Niti Aayog report. The New Indian Express. https://www.newindianexpress.com/states/odisha/2021/Nov/27/30-per-centof-odisha-population-is-poor-niti-aayog-report-2388739.html
  52. Senapati, A. K. (2022). Weather effects and their long-term impact on agricultural yields in Odisha, East India: Agricultural policy implications using NARDL approach. Journal of Public Affairs, 22(3): e2498. https://doi.org/10.1002/pa.2498 DOI: https://doi.org/10.1002/pa.2498
  53. Seven, U., and Tumen, S. (2020). Agricultural Credits and Agricultural Productivity: Cross-Country Evidence (IZA Discussion Paper No. 12930). Bonn. Institute for the Study of Labor. https://doi.org/10.2139/ssrn.3534478 DOI: https://doi.org/10.2139/ssrn.3534478
  54. Siotra, V., and Kumari, S. (2024). Assessing spatiotemporal patterns of crop combination and crop concentration in Jammu Division of Jammu and Kashmir. Journal of Social and Economic Development, 27: 139-166. https://doi.org/10.1007/s40847-024-00337-5 DOI: https://doi.org/10.1007/s40847-024-00337-5
  55. Sjulgård, H., Keller, T., Garland, G., and Colombi, T. (2023). Relationships between weather and yield anomalies vary with crop type and latitude in Sweden. Agricultural Systems, 211: 103757. https://doi.org/10.1016/j.agsy.2023.103757 DOI: https://doi.org/10.1016/j.agsy.2023.103757
  56. Srinivasa Rao, Ch., Gopinath, K. A., Prasad, J. V. N. S., Prasannakumar, and Singh, A. K. (2016). Chapter Four - Climate Resilient Villages for Sustainable Food Security in Tropical India: Concept, Process, Technologies, Institutions, and Impacts. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 140, pp. 101–214). Academic Press. https://doi.org/10.1016/bs.agron.2016.06.003 DOI: https://doi.org/10.1016/bs.agron.2016.06.003
  57. Taraz, V. (2018). Can farmers adapt to higher temperatures? Evidence from India. World Development, 112: 205–219. https://doi.org/10.1016/j.worlddev.2018.08.006 DOI: https://doi.org/10.1016/j.worlddev.2018.08.006
  58. Tesfaye, W., and Tirivayi, N. (2020). Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda. World Development, 125: 104686. https://doi.org/10.1016/j.worlddev.2019.104686 DOI: https://doi.org/10.1016/j.worlddev.2019.104686
  59. Tripathi, A., and Mishra, A. K. (2017). Knowledge and passive adaptation to climate change: An example from Indian farmers. Climate Risk Management, 16: 195–207. https://doi.org/10.1016/j.crm.2016.11.002 DOI: https://doi.org/10.1016/j.crm.2016.11.002
  60. Tuihedur Rahman, H. M., Hickey, G. M., Ford, J. D., and Egan, M. A. (2018). Climate change research in Bangladesh: Research gaps and implications for adaptation-related decision-making. Regional Environmental Change, 18(5): 1535–1553. https://doi.org/10.1007/s10113-017-1271-9 DOI: https://doi.org/10.1007/s10113-017-1271-9
  61. Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., … Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5): 054010. https://doi.org/10.1088/1748-9326/ab154b DOI: https://doi.org/10.1088/1748-9326/ab154b
  62. Xiang, T., Malik, T. H., Hou, J. W., and Ma, J. (2022). The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013. Agriculture, 12(12): 2123. https://doi.org/10.3390/agriculture12122123 DOI: https://doi.org/10.3390/agriculture12122123
  63. Xie, B., Brewer, M. B., Hayes, B. K., McDonald, R. I., and Newell, B. R. (2019). Predicting climate change risk perception and willingness to act. Journal of Environmental Psychology, 65: 101331. https://doi.org/10.1016/j.jenvp.2019.101331 DOI: https://doi.org/10.1016/j.jenvp.2019.101331
  64. Yamamoto, H., and Naka, T. (2021). Quantitative Analysis of the Impact of Floods on Firms’ Financial Conditions (Working Paper No. 21-E-10). Bank of Japan. https://www.boj.or.jp/en/research/wps_rev/wps_2021/wp21e10.htm
  65. Yang, H., Cao, Y., Shi, Y., Wu, Y., Guo, W., Fu, H., and Li, Y. (2022). The Dynamic Impacts of Weather Changes on Vegetable Price Fluctuations in Shandong Province, China: An Analysis Based on VAR and TVP-VAR Models. Agronomy, 12(11): 2680. https://doi.org/10.3390/agronomy12112680 DOI: https://doi.org/10.3390/agronomy12112680
  66. Yoshida, S., Kashima, S., Okazaki, Y., and Matsumoto, M. (2023). Effects of 2018 Japan floods on healthcare costs and service utilisation in Japan: A retrospective cohort study. BMC Public Health, 23(1): 1–10. https://doi.org/10.1186/s12889-023-15205-w DOI: https://doi.org/10.1186/s12889-023-15205-w
  67. Zampieri, M., Ceglar, A., Dentener, F., and Toreti, A. (2018). Understanding and reproducing regional diversity of climate impacts on wheat yields: Current approaches, challenges and data driven limitations. Environmental Research Letters, 13(2): 021001. https://doi.org/10.1088/1748-9326/aaa00d DOI: https://doi.org/10.1088/1748-9326/aaa00d