Vol. 14 No. 4 (2025)
Full Research Articles

Intention to use AI-Based Camera Systems in German Pig Farming: An extended technology acceptance model

Alexander Kühnemund
Osnabrück University of Applied Sciences, Department of Farm Management, Osnabrück, Germany
Guido Recke
Osnabrück University of Applied Sciences, Department of Farm Management, Osnabrück, Germany

Published 2025-06-08

Keywords

  • AI,
  • Precision livestock farming,
  • Surveillance,
  • Technology acceptance

How to Cite

Kühnemund, A., & Recke, G. (2025). Intention to use AI-Based Camera Systems in German Pig Farming: An extended technology acceptance model. Bio-Based and Applied Economics, 14(4), 9–27. https://doi.org/10.36253/bae-17220

Abstract

This study explores the factors influencing German pig farmers’ intention to use (ITU) AI-based camera systems in livestock farming. This research utilized an extended Technology Acceptance Model. Data from 185 farmers were analyzed through structural equation modeling, revealing that ease of use (β=0.276), innovation tolerance (β=0.398) and personal innovativeness (β=0.101) notably impact ITU. Concerns over data ownership and transparency showed limited effects, and perceived job relevance (β=0.355) enhanced acceptance. Expected transparency of AI camera systems had strong influence on perceived ease of use (β=0.419). A gradual integration of the factors showed that perceived usefulness has a strong influence on ITU but is superimposed by the factor job relevance in the modelling process. With an R2 of 0.749, the model has high explanatory and predictive power. These insights underscore the importance of user-centric design and transparency in AI technology deployment in agriculture. Although the ITU AI camera systems in pig farming depends on its ease of use and transparency, it also depends on the personal characteristics.

References

  1. Abadi Ghadim, A. K., & Pannell, D. J. (1997). A Conceptual Framework of Adoption of an Innovation Including Dynamic Learning, Personal Perceptions and Risk Attitudes.
  2. Agarwal, R., & Prasad, J. (1998). A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204
  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  4. Akkaya, C., Wolf, P., & Krcmar, H. (2012). The Surprisingly Low Effect of National Culture on E-Government Adoption: A Cross-Cultural Comparison (Vol. 6).
  5. Alambaigi, A., & Ahangari, I. (2016). Technology Acceptance Model (TAM) as a predictor model for explaining agricultural experts behavior in acceptance of ICT. International Journal of Agricultural Management and Development (IJAMAD), 6(1047-2017-1663), 235-247.
  6. Albernaz-Gonçalves, R., Olmos, G., & Hötzel, M. J. (2021). My pigs are ok, why change? – animal welfare accounts of pig farmers. animal, 15(3), 100154. https://doi.org/10.1016/j.animal.2020.100154
  7. Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510-520. https://doi.org/10.1016/j.dss.2012.07.002
  8. Beaudry, A., & Pinsonneault, A. (2010). The Other Side of Acceptance: Studying the Direct and Indirect Effects of Emotions on Information Technology Use. MIS Quarterly, 34(4), 689-710. https://doi.org/10.2307/25750701
  9. Becker, J.-M., Ringle, C., Sarstedt, M., & Völckner, F. (2015). How collinearity affects mixture regression results. Marketing Letters, 26(4), 643-659. https://EconPapers.repec.org/RePEc:kap:mktlet:v:26:y:2015:i:4:p:643-659
  10. Block, J. B., Michels, M., & Mußhoff, O. (2023). A Trans-Theoretical Model for Farmers’ perceived Usefulness of Digital Risk Management Tools – A Case Study from Germany. German Journal of Agricultural Economics, 72(3-4). https://doi.org/10.30430/gjae.2023.0330
  11. Cardoso, C. S., Hötzel, M. J., Weary, D. M., Robbins, J. A., & von Keyserlingk, M. A. (2016). Imagining the ideal dairy farm. Journal of Dairy Science, 99(2), 1663-1671. https://doi.org/10.3168/jds.2015-9925
  12. Condotta, I. C. F. S., Brown-Brandl, T. M., Silva-Miranda, K. O., & Stinn, J. P. (2018). Evaluation of a depth sensor for mass estimation of growing and finishing pigs. Biosystems Engineering, 173, 11-18. https://doi.org/10.1016/j.biosystemseng.2018.03.002
  13. Dam, H. K., Tran, T., & Ghose, A. (2018). Explainable software analytics Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results, Gothenburg, Sweden.
  14. Davis, F. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems.
  15. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  16. Davis, F. D., & Granić, A. (2024). Evolution of TAM. In F. D. Davis & A. Granić (Eds.), The Technology Acceptance Model: 30 Years of TAM (pp. 19-57). Springer International Publishing.
  17. Dumbach, P., Liu, R., Jalowski, M., & Eskofier, B. M. (2021). The Adoption Of Artificial Intelligence In SMEs-A Cross-National Comparison In German And Chinese Healthcare. BIR Workshops,
  18. Fagan, M., Kilmon, C., & Pandey, V. (2012). Exploring the adoption of a virtual reality simulation. Campus-Wide Information Systems, 29(2), 117-127. https://doi.org/10.1108/10650741211212368
  19. Federal Ministry of Food and Agriculture. (2023). Altersgliederung der landwirtschaftlichen Betriebsinhaber. Retrieved from https://www.bmel-statistik.de/landwirtschaft/tabellen-zur-landwirtschaft
  20. Fernández-Carrión, E., Barasona, J. Á., Sánchez, Á., Jurado, C., Cadenas-Fernández, E., & Sánchez-Vizcaíno, J. M. (2020). Computer Vision Applied to Detect Lethargy through Animal Motion Monitoring: A Trial on African Swine Fever in Wild Boar. Animals, 10(12), 2241. https://doi.org/10.3390/ani10122241
  21. German Farmers Association. (2022). Situation Report 2021/2022. Trends and facts about agriculture.
  22. German Federal Ministry of Food and Agriculture. (2024). Bundestag berät über Tierschutzgesetz. Retrieved 25.11. from
  23. Giampietri, E., Yu, X., & Trestini, S. (2020). The role of trust and perceived barriers on farmer’s intention to adopt risk management tools. Bio-based and Applied Economics, 9(1), 1-24. https://doi.org/10.13128/bae-8416
  24. Gorsuch, R. L., & Ortberg, J. (1983). Moral obligation and attitudes: Their relation to behavioral intentions. Journal of Personality and Social Psychology, 44, 1025-1028. https://doi.org/10.1037/0022-3514.44.5.1025
  25. Granić, A. (2024). Technology adoption at individual level: toward an integrated overview. Universal Access in the Information Society, 23(2), 843-858. https://doi.org/10.1007/s10209-023-00974-3
  26. Gupta, N., Fischer, A. R., & Frewer, L. J. (2012). Socio-psychological determinants of public acceptance of technologies: A review. Public Understanding of Science, 21(7), 782-795.
  27. Hair, J., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM).
  28. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021a). An Introduction to Structural Equation Modeling. In J. F. Hair Jr, G. T. M. Hult, C. M. Ringle, M. Sarstedt, N. P. Danks, & S. Ray (Eds.), Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook (pp. 1-29). Springer International Publishing.
  29. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021b). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A workbook.
  30. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
  31. Härtel, I. (2020). Künstliche Intelligenz in der nachhaltigen Landwirtschaft – Datenrechte und Haftungsregime. Natur und Recht, 42(7), 439-453. https://doi.org/10.1007/s10357-020-3704-3
  32. Heinke, H., Gröner, C., & Theuvsen, L. (2017). Tierwohl als Differenzierungsstrategie zur Erreichung einer höheren Prozessqualität in der Schweineproduktion? Die Sicht der Landwirte Heutige und zukünftige Herausforderungen an die Qualitätswissenschaft in Forschung und Praxis, Erlangen.
  33. Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227-261. https://doi.org/10.1111/isj.12131
  34. Kostka, G., Steinacker, L., & Meckel, M. (2021). Between security and convenience: Facial recognition technology in the eyes of citizens in China, Germany, the United Kingdom, and the United States. Public Understanding of Science, 30(6), 671-690. https://doi.org/10.1177/09636625211001555
  35. Krempel, E., & Beyerer, J. (2014). TAM-VS: A Technology Acceptance Model for Video Surveillance. Privacy Technologies and Policy, Cham.
  36. Kühnemund, A., & Recke, G. (2024). Non-behavioral variables on the acceptance of AI-based camera systems. 44. GIL-Jahrestagung, Biodiversität fördern durch digitale Landwirtschaft,
  37. Lemken, D., Spiller, A., & von Meyer-Höfer, M. (2017). The Case of Legume-Cereal Crop Mixtures in Modern Agriculture and the Transtheoretical Model of Gradual Adoption. Ecological Economics, 137, 20-28. https://doi.org/10.1016/j.ecolecon.2017.02.021
  38. Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14(1), 81-95. https://doi.org/10.1007/s10209-014-0348-1
  39. Michels, M., Bonke, V., & Musshoff, O. (2020). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21(6), 1209-1226. https://doi.org/10.1007/s11119-020-09715-5
  40. Michels, M., Fecke, W., Feil, J.-H., Musshoff, O., Pigisch, J., & Krone, S. (2020). Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agriculture, 21(2), 403-425. https://doi.org/10.1007/s11119-019-09675-5
  41. Michels, M., von Hobe, C.-F., Weller von Ahlefeld, P. J., & Musshoff, O. (2021). The adoption of drones in German agriculture: a structural equation model. Precision Agriculture, 22(6), 1728-1748. https://doi.org/10.1007/s11119-021-09809-8
  42. Mohr, S., & Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22(6), 1816-1844. https://doi.org/10.1007/s11119-021-09814-x
  43. Montes de Oca Munguia, O., Pannell, D. J., & Llewellyn, R. (2021). Understanding the Adoption of Innovations in Agriculture: A Review of Selected Conceptual Models. Agronomy, 11(1), 139. https://www.mdpi.com/2073-4395/11/1/139
  44. Nasirahmadi, A., Sturm, B., Olsson, A.-C., Jeppsson, K.-H., Müller, S., Edwards, S., & Hensel, O. (2019). Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine. Computers and Electronics in Agriculture, 156, 475-481. https://doi.org/10.1016/j.compag.2018.12.009
  45. Nickl, P. (2014). Risikogesellschaft und die German Angst. In L. Hieber & H.-U. Kammeyer (Eds.), Verantwortung von Ingenieurinnen und Ingenieuren (pp. 95-101). Springer Fachmedien Wiesbaden.
  46. Pfeiffer, J., Gabriel, A., & Gandorfer, M. (2021). Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany. Agriculture and Human Values, 38(1), 107-128. https://doi.org/10.1007/s10460-020-10145-2
  47. Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technology, 8, 61-69. https://doi.org/10.1016/j.protcy.2013.11.010
  48. Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Vaughan, J. W., & Wallach, H. M. (2018). Manipulating and Measuring Model Interpretability. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.48550/arXiv.1802.07810
  49. Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. Am J Health Promot, 12(1), 38-48. https://doi.org/10.4278/0890-1171-12.1.38
  50. Rogers, E. M. (2003). Diffusion of innovations (5 ed.). Free Press.
  51. Rogers, E. M., & Shiemaker, F. F. (1971). Communication of Innovations. The Free Press, New York.
  52. Rogers, R. W. (1975). A Protection Motivation Theory of Fear Appeals and Attitude Change1. The Journal of Psychology, 91(1), 93-114. https://doi.org/10.1080/00223980.1975.9915803
  53. Rohleder, B., Krüsken, B., & Reinhardt, H. (2020). Digitalisierung in der Landwirtschaft 2020. https://www.bitkom.org/sites/main/files/2022-01/27.04.20_digitalisierung-in-der-landwirtschaft-2020.pdf
  54. Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T., & Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174. https://doi.org/10.1016/j.agsy.2016.09.009
  55. Saheb, T. (2023). Ethically contentious aspects of artificial intelligence surveillance: a social science perspective. AI and Ethics, 3(2), 369-379.
  56. Sarstedt, M., Hair, J. F., Ringle, C. M., Thiele, K. O., & Gudergan, S. P. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998-4010. https://doi.org/10.1016/j.jbusres.2016.06.007
  57. Schmidt, P., Biessmann, F., & Teubner, T. (2020). Transparency and trust in artificial intelligence systems. Journal of Decision Systems, 29(4), 260-278. https://doi.org/10.1080/12460125.2020.1819094
  58. Schukat, S., & Heise, H. (2021). Smart Products in Livestock Farming – An Empirical Study on the Attitudes of German Farmers. Animals, 11(4), 1055. https://doi.org/10.3390/ani11041055
  59. Schulze, M., Sonntag, W., & von Meyer-Höfer, M. (2023). Is less more? Investigating citizen and consumer preferences for the future direction of livestock farming policy. Journal of Cleaner Production, 390, 136136. https://doi.org/10.1016/j.jclepro.2023.136136
  60. Seibert, D., Godulla, A., & Wolf, C. (2021). Understanding How Personality Affects the Acceptance of Technology: A Literature Review.
  61. Shmueli, G., & Koppius, O. R. (2011). Predictive Analytics in Information Systems Research. MIS Quarterly, 35(3), 553-572. https://doi.org/10.2307/23042796
  62. Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J.-H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322-2347. https://doi.org/10.1108/EJM-02-2019-0189
  63. Sok, J., Borges, J. R., Schmidt, P., & Ajzen, I. (2021). Farmer Behaviour as Reasoned Action: A Critical Review of Research with the Theory of Planned Behaviour. Journal of Agricultural Economics, 72(2), 388-412. https://doi.org/10.1111/1477-9552.12408
  64. Sok, J., & Hoestra, J. (2023). Will farmers go electric? How Dutch environmental regulation affects tractor purchase motivations and preferences. Energy Research & Social Science, 102, 103180. https://doi.org/10.1016/j.erss.2023.103180
  65. Statistisches Bundesamt. (2023). Arbeitskräfte: Deutschland, Jahre, Geschlecht, Altersgruppen, Rechtsformen, Art der Arbeitskräfte, Beschäftigungsumfang. Retrieved 20.05.2023 from https://www-genesis.destatis.de/genesis//online?operation=table&code=41141-0027&bypass=true&levelindex=1&levelid=1690281844084#abreadcrumb
  66. Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618-632. https://doi.org/10.1016/j.emj.2016.06.003
  67. Teddlie, C., & Yu, F. (2007). Mixed Methods Sampling:A Typology With Examples. Journal of Mixed Methods Research, 1(1), 77-100. https://doi.org/10.1177/1558689806292430
  68. Thomas, R. J., O’Hare, G., & Coyle, D. (2023). Understanding technology acceptance in smart agriculture: A systematic review of empirical research in crop production. Technological Forecasting and Social Change, 189, 122374. https://doi.org/10.1016/j.techfore.2023.122374
  69. Thompson, R., Barclay, D., & Higgins, C. A. (1995). The partial least squares approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies: Special Issues on Research Methodology, 2, 284-324.
  70. Tiwari, P., & Tiwari, S. K. (2020). Integration of technology acceptance model with perceived risk, perceived trust and perceived cost: Customers’ adoption of m-banking. International Journal on Emerging Technologies, 11(2), 447-452.
  71. Useche, P., Barham, B. L., & Foltz, J. D. (2013). Trait-based Adoption Models Using Ex-Ante and Ex-Post Approaches. American Journal of Agricultural Economics, 95(2), 332-338. https://doi.org/10.1093/ajae/aas044
  72. van Heek, J., Arning, K., & Ziefle, M. (2017). The Surveillance Society: Which Factors Form Public Acceptance of Surveillance Technologies? Smart Cities, Green Technologies, and Intelligent Transport Systems, Cham.
  73. van Hertem, T., Rooijakkers, L., Berckmans, D., Peña Fernández, A., Norton, T., Berckmans, D., & Vranken, E. (2017). Appropriate data visualisation is key to Precision Livestock Farming acceptance. Computers and Electronics in Agriculture, 138, 1-10. https://doi.org/10.1016/j.compag.2017.04.003
  74. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  75. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  76. Wanner, J., Herm, L.-V., Heinrich, K., & Janiesch, C. (2022). The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study. Electronic Markets, 32(4), 2079-2102. https://doi.org/10.1007/s12525-022-00593-5
  77. Weinrich, R., Kühl, S., Zühlsdorf, A., & Spiller, A. (2014). Consumer attitudes in Germany towards different dairy housing systems and their implications for the marketing of pasture raised milk. International Food and Agribusiness Management Review, 17(1030-2016-83034), 205-222.
  78. Wongsriworaphon, A., Arnonkijpanich, B., & Pathumnakul, S. (2015). An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Computers and Electronics in Agriculture, 115, 26-33. https://doi.org/10.1016/j.compag.2015.05.004
  79. Zhao, R., Benbasat, I., & Cavusoglu, H. (2019). Do Users Always Want to Know More? Investigating the Relationship between System Transparency and Users’ Trust in Advice-Giving Systems. European Conference on Information Systems.