Published 2025-06-26
Keywords
- Wheat Production,
- Self-sufficiency,
- Productivity,
- Forecasting models,
- Policy Making
How to Cite
Copyright (c) 2025 Alexandre Macedo João, Dulce Freire, Humberto Rocha, Joana Dias

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This study analyses Portugal’s wheat productive capacity, exploring the reasons behind its recent steady decline despite achieving self-sufficiency in the 20th century. Using Multivariate Adaptive Regression Splines (MARS), which proved to be highly effective in the development of forecasting models, the research provides valuable insights for countries facing similar challenges in defining production strategies. By employing this approach, decision-makers can improve resource allocation, ensure food security, and foster a resilient agricultural sector. The findings highlight the importance of understanding wheat production dynamics within the European Union and aligning national strategies with the Union’s goals and policies. The analysis indicates that achieving self-sufficiency is possible, supported by productivity improvements and increased cultivation areas. However, realizing significant production growth demands the adoption of sustainable strategies. This research contributes to shaping informed agricultural policies, enhancing decision-making processes, and promoting a more sustainable and efficient food production system to meet future challenges.
References
- Barreiros, L. S. (2018). Estratégia Nacional para a Promoção da Produção de Cereais. 9º Colóquio Nacional do Milho. Póvoa do Varzim.
- Cunha, A. (2010). Impactos da adesão na agricultura e nas pescas. Revista Europa Novas Fronteiras. Nºs, 26.
- Dias, J., & Rocha, H. (2019). Forecasting wheat prices based on past behavior: comparison of different modelling approaches. In Computational Science and Its Applications–ICCSA 2019: 19th International Conference, Saint Petersburg, Russia, July 1–4, 2019, Proceedings, Part III 19 (pp. 167–182). Springer International Publishing.
- Faísca, C. M. (2019). A produção agrícola no Alentejo. Revista de Estudios Económicos y Empresariales, 39–64.
- Federico, G. (2010). Feeding the world. In Feeding the World. Princeton University Press.
- Freire, D. (2008). A Campanha do Trigo. In Simões do Paço, A. (ed.), Os Anos de Salazar. 1933 – A Constituição do Estado Novo (Vol.2, pp. 31–39). Lisboa: Centro Editor PDA/Planeta DeAgostini.
- Freire, D. & Lains, P. (Eds.) (2017). An agrarian history of Portugal, 1000-2000: economic development on the European frontier. Leiden / Boston: Brill.
- Friedman, J. (1988). Multivariate Adaptive Regression Splines (MARS) (No. 102). Technical Report.
- Gaigbe-Togbe, V., Bassarsky, L., Gu, D., Spoorenberg, T., & Zeifman, L. (2022). World Population Prospects 2022.
- Gao, J., Linton, O., & Peng, B. (2023). A non-parametric panel model for climate data with seasonal and spatial variation. Journal of the Royal Statistical Society, 187(1), 160–179
- Garrido-Lestache, E., Lopez-Bellido, R.J., Lopez-Bellido, L., (2005). Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 23, 265–278.
- Gouveia, C. & Trigo, R.M. (2008) Influence of Climate Variability on Wheat Production in Portugal. In: Soares A., Pereira M.J., Dimitrakopoulos R. (eds) geoENV VI – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 15. Springer, Dordrecht.
- Grčak, M., Grčak, D., Penjišević, A., Simjanović, D., Orbović, B., Đukić, N., & Rajičić, V. (2020). The trends in maize and wheat production in the Republic of Serbia. Acta Agriculturae Serbica, 25(50), 121–127.
- Jambekar, S., Nema, S., & Saquib, Z. (2018). Prediction of Crop Production in India Using Data Mining Techniques. Proceedings - 2018 4th International Conference on Computing, Communication Control and Automation, ICCUBEA 2018.
- Lains, P., Costa, L. F., Grafe, R., Loncán, A. H., Luis, D. I., Pinilla, V., & Vilar, H. V. (Eds.). (2024). An economic history of the Iberian Peninsula, 700-2000. Cambridge University Press.
- Michel L., Makowski D. (2013) Comparison of Statistical Models for Analyzing Wheat Yield Time Series. PLoS One 8(10): e78615.
- Nayana, B. M., Kumar, K. R., & Chesneau, C. (2022). Wheat Yield Prediction in India Using Principal Component Analysis-Multivariate Adaptive Regression Splines (PCA-MARS). AgriEngineering, 4(2), 461–474. MDPI AG.
- Pais, J. M., Lima, A., Baptista, J., Jesus, M. De, & Gameiro, M. (1978). Elementos para a história do fascismo nos campos: A «Campanha do Trigo»: 1928-38 (I) & (II). AnáliseSocial, XIV (54), 321–389.
- Rocha, H., & Dias, J. M. (2019). Early prediction of durum wheat yield in Spain using radial basis functions interpolation models based on agroclimatic data. Computers and Electronics in Agriculture, 157, 427-435.
- Scott, J. C. (2017). Against the Grain: A Deep History of the Earliest States. Yale University Press.
- Soares, Fernando de Brito (2005). “A agricultura”. In Pedro Lains and Álvaro F. da Silva (Eds.). História Económica de Portugal. Lisbon: Imprensa de Ciências Sociais, vol. 3, pp. 158–183.
- Srikanthan, R., & McMahon, T. A. (2001). Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences, 5(4), 653–670.
- Sunding, D., & Zilberman, D. (2001). The agricultural innovation process: research and technology adoption in a changing agricultural sector. Handbook of agricultural economics, 1, 207–261.
- van Vliet, J., Eitelberg, D. A., & Verburg, P. H. (2017). A global analysis of land take in cropland areas and production displacement from urbanization. Global Environmental Change-Human and Policy Dimensions, 43, 107–115.
- Viana, C. M., Freire, D., Abrantes, P., & Rocha, J. (2021). Evolution of agricultural production in Portugal during 1850–2018: A geographical and historical perspective. Land, 10(8).
- Wesseler, J. (2022). The EU’s farm‐to‐fork strategy: An assessment from the perspective of agricultural economics. Applied Economic Perspectives and Policy, 44(4), 1826–1843.
- Wieliczko, B. (2017). The impact of global surrounding on the common agricultural policy. 498, 374–381.
- Zhang, Y.-T., Li, M.-Y., & Zhou, W. (2024). Impact of the Russia-Ukraine Conflict on International Staple Agrifood Trade Networks. Foods, 13(13), 2134.