Vol. 14 No. 4 (2025)
Full Research Articles

Enabling technologies in citrus farming: A living lab approach to agroecology and sustainable water resource management

Giuseppe Timpanaro
Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
Giulio Cascone
Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
Vera Teresa Foti
Department of Agriculture, Food and Environment, University of Catania, Catania, Italy

Published 2025-07-09

Keywords

  • Agroecology,
  • Enabling Technologies,
  • Living Lab,
  • Water Management,
  • Citrus Farming

How to Cite

Timpanaro, G., Cascone, G., & Foti, V. T. (2025). Enabling technologies in citrus farming: A living lab approach to agroecology and sustainable water resource management. Bio-Based and Applied Economics, 14(4), 67–84. https://doi.org/10.36253/bae-17357

Abstract

This study examines the role of enabling technologies in the agroecological transition, focusing on sustainable water management in citrus farming through the participatory approach of a Living Lab in the Inner Area of Calatino in Sicily. The analysis is based on a comparison of two citrus farms: one equipped with advanced digital tools (sensors, decision support systems, and real-time monitoring), and one with a traditional management approach. Through the joint application of economic analysis, Monte Carlo simulation and sensitivity analysis, it was possible to estimate the effects of technology adoption. Findings reveal that enabling technologies reduce water consumption by 33%, increase yield per hectare by 16%, and boost net profit by 25% (+€2,780/ha), enhancing resource efficiency and lowering operational costs. Additionally, the Living Lab facilitated knowledge transfer, fostered collaboration, and mitigated resistance to innovation, highlighting the need for targeted training and institutional support to promote broader adoption. These results provide valuable insights for policymakers and stakeholders, demonstrating how digital solutions can drive sustainability, economic viability, and resilience in agriculture, but also for farmers, providing operational tools to improve farm efficiency and profitability.

References

  1. Ajena, F., Bossard, N., Clément, C., Hibeck, A., Tiselli, E., and Oehen, B. (2022). Agroecology and Digitalisation: traps and opportunities to transform the food system. Working paper, IFOAM Organics Europe.
  2. Alston, J. M. (2010). The Benefits from Agricultural Research and Development, Innovation, and Productivity Growth. OECD Food, Agriculture and Fisheries Papers, No. 31, OECD Publishing. https://doi.org/10.1787/5km91nfsnkwg-en.
  3. Alston, J. M., and Pardey, P. G. (2021). The economics of agricultural innovation. Handbook of agricultural economics, 5: 3895-3980. https://doi.org/10.1016/bs.hesagr.2021.10.001.
  4. Anderson, C. R., and Maughan, C. (2021). The innovation imperative”: the struggle over agroecology in the international food policy arena. Frontiers in Sustainable Food Systems, 5: 619185. https://doi.org/10.3389/fsufs.2021.619185
  5. Arata, L., and Menozzi, D. (2023). Farmers’ motivations and behaviour regarding the adoption of more sustainable agricultural practices and activities. Bio-Based and Applied Economics, 12(1): 3–4. https://doi.org/10.36253/bae-14720
  6. Beaudoin, C., Joncoux, S., Jasmin, J. F., Berberi, A., McPhee, C., Schillo, R. S., and Nguyen, V. M. (2022). A research agenda for evaluating living labs as an open innovation model for environmental and agricultural sustainability. Environmental Challenges, 7: 100505. https://doi.org/10.1016/j.envc.2022.100505.
  7. Belliggiano, A., and Conti, M. (2019). L’agroecologia come formula di sostenibilità e recupero dei saperi locali. Perspectives on rural development, 2019(3): 375-400.
  8. Bellon-Maurel, V., Lutton, E., Bisquert, P., Brossard, L., Chambaron-Ginhac, S., Labarthe, P., … and Veissier, I. (2022). Digital revolution for the agroecological transition of food systems: A responsible research and innovation perspective. Agricultural Systems, 203: 103524. https://doi.org/10.1016/j.agsy.2022.103524.
  9. Bergez, J. E., Audouin, E., and Therond, O. (2019). Agroecological transitions: from theory to practice in local participatory design (p. 335). Springer Nature. https://doi.org/10.1007/978-3-030-01953-2
  10. Bertoglio, R., Corbo, C., Renga, F. M., and Matteucci, M. (2021). The digital agricultural revolution: a bibliometric analysis literature review. Ieee Access, 9: 134762-134782. https://doi.org/10.48550/arXiv.2103.12488
  11. Bicksler, A. J., Mottet, A., Lucantoni, D., Sy, M. R., and Barrios, E. (2023). The 10 Elements of Agroecology interconnected: Making them operational in FAO’s work on agroecology. Elem Sci Anth, 11(1): 00041. https://doi.org/10.1525/elementa.2022.00041
  12. Bissadu, K. D., Sonko, S., and Hossain, G. (2025). Society 5.0 enabled agriculture: Drivers, enabling technologies, architectures, opportunities, and challenges. Information Processing in Agriculture, 12(1): 112-124. https://doi.org/10.1016/j.inpa.2024.04.003
  13. Bless, A., Davila, F., and Plant, R. (2023). A genealogy of sustainable agriculture narratives: implications for the transformative potential of regenerative agriculture. Agriculture and Human Values, 40(4): 1379-1397. https://doi.org/10.1007/s10460-023-10444-4
  14. Brumer, A., Wezel, A., Dauber, J., Breland, T. A., and Grard, B. (2023). Development of agroecology in Austria and Germany. Open Research Europe, 3. https://doi.org/10.12688/openreseurope.15431.1
  15. Cascone, G., Scuderi, A., Guarnaccia, P., and Timpanaro, G. (2024). Promoting innovations in agriculture: Living labs in the development of rural areas. Journal of Cleaner Production, 141247. https://doi.org/10.1016/j.jclepro.2024.141247.
  16. Chollet, N., Bouchemal, N., and Ramdane-Cherif, A. (2023). IoT-Enabled Agroecology: Advancing Sustainable Smart Farming Through Knowledge-Based Reasoning. In KEOD (pp. 190-199). https://doi.org/10.5220/0012183500003598
  17. Clapp, J., and Ruder, S. L. (2020). Precision technologies for agriculture: Digital farming, gene-edited crops, and the politics of sustainability. Global Environmental Politics, 20(3): 49-69. https://doi.org/10.1162/glep_a_00566
  18. D’Annolfo, R., Gemmill-Herren, B., Graeub, B., and Garibaldi, L. A. (2017). A review of social and economic performance of agroecology. International Journal of Agricultural Sustainability, 15(6): 632-644. https://doi.org/10.1080/14735903.2017.1398123
  19. Ditzler, L., and Driessen, C. (2022). Automating agroecology: How to design a farming robot without a monocultural mindset?. Journal of Agricultural and Environmental Ethics, 35(1): 2. https://doi.org/10.1007/s10806-021-09876-x
  20. Domínguez, A., Escudero, H. J., Rodríguez, M. P., Ortiz, C. E., Arolfo, R. V., and Bedano, J. C. (2024). Agroecology and organic farming foster soil health by promoting soil fauna. Environment, Development and Sustainability, 26(9): 22061-22084. https://doi.org/10.1007/s10668-022-02885-4.
  21. Duff, H., Hegedus, P. B., Loewen, S., Bass, T., and Maxwell, B. D. (2021). Precision agroecology. Sustainability, 14(1): 106. https://doi.org/10.3390/su14010106
  22. Emeana, E. M. (2021). Agroecological Development in Nigeria: The Challenges to its Improvement and the Potential for Mobile-Enabled Applications to Enhance Transitioning (Doctoral dissertation, Coventry University).
  23. Espelt, R., Peña-López, I., Miralbell-Izard, O., Martín, T., and Vega Rodríguez, N. (2019). Impact of information and communication technologies in agroecological cooperativism in Catalonia. Agric. Econ. 65 (2): 59–66. https://doi.org/10.17221/171/2018-AGRICECON
  24. Ewert, F., Baatz, R., and Finger, R. (2023). Agroecology for a sustainable agriculture and food system: from local solutions to large-scale adoption. Annual Review of Resource Economics, 15(1): 351-381. https://doi.org/10.1146/annurev-resource-102422-090105
  25. FAO (2018) The 10 elements of agroecology: guiding the transition to sustainable food and agricultural systems. http://www.fao.org/3/i9037en/i9037en.pdf
  26. Gardezi, M., Abuayyash, H., Adler, P. R., Alvez, J. P., Anjum, R., Badireddy, A. R., … and Zia, A. (2024). The role of living labs in cultivating inclusive and responsible innovation in precision agriculture. Agricultural Systems, 216: 103908. https://doi.org/10.1016/j.agsy.2024.103908.
  27. Gascuel-Odoux, C., Lescourret, F., Dedieu, B., Detang-Dessendre, C., Faverdin, P., Hazard, L., … and Caquet, T. (2022). A research agenda for scaling up agroecology in European countries. Agronomy for sustainable development, 42(3): 53. https://doi.org/10.1007/s13593-022-00786-4
  28. Gava, O., Povellato, A., Galioto, F., Pražan, J., Schwarz, G., Quero, A. L., … and Carolus, J. (2022). Policy instruments to support agroecological transitions in Europe. EuroChoices, 21(3): 13-20. https://doi.org/10.1111/1746-692X.12367
  29. Gava, O., Vanni, F., Schwarz, G., Guisepelli, E., Vincent, A., Prazan, J., … and Povellato, A. (2025). Governance networks for agroecology transitions in rural Europe. Journal of Rural Studies, 114: 103482. https://doi.org/10.1016/j.jrurstud.2024.103482
  30. Giagnocavo, C., de Cara-García, M., González, M., Juan, M., Marín-Guirao, J. I., Mehrabi, S., … and Crisol-Martínez, E. (2022). Reconnecting farmers with nature through agroecological transitions: interacting niches and experimentation and the role of agricultural knowledge and innovation systems. Agriculture, 12(2): 137. https://doi.org/10.3390/agriculture12020137
  31. Giampietri, E., Yu, X., and Trestini, S. (2020). The role of trust and perceived barriers on farmer’s intention to adopt risk management tools. Bio-Based and Applied Economics, 9(1): 1–24. https://doi.org/10.13128/bae-8416.
  32. ISTAT- Istituto di Statistica Nazionale, Seventh general census of agriculture: first results. https://www.istat.it/it/files//2022/06/REPORT-CENSIAGRI_2021-def. pdf, 2022. (Accessed 25 Aprile 2025).
  33. Jamil, I., Jun, W., Mughal, B., Waheed, J., Hussain, H., and Waseem, M. (2021). Agricultural Innovation: A comparative analysis of economic benefits gained by farmers under climate resilient and conventional agricultural practices. Land Use Policy, 108: 105581. https://doi.org/10.1016/j.landusepol.2021.105581.
  34. Jeanneret, P., Aviron, S., Alignier, A., Lavigne, C., Helfenstein, J., Herzog, F., … and Petit, S. (2021). Agroecology landscapes. Landscape Ecology, 36(8): 2235-2257. https://doi.org/10.1007/s10980-021-01248-0
  35. Kerr, R. B. (2020). Agroecology as a means to transform the food system. Landbauforschung, 70(2): 77-82. https://doi.org/10.3220/LBF1608651010000
  36. Larbaigt, J., Barcellini, F., and Zouinar, M. (2024). Transitioning towards agroecology through digital technology: an empirical study of design activities in an agroliving lab. In Proceedings of the European Conference on Cognitive Ergonomics 2024 (pp. 1-7). https://doi.org/10.1145/3673805.3673833
  37. Levavasseur, V. (2022). Supporting and massifying agroecology practices with an operational toolbox the French case study. In XXXI International Horticultural Congress (IHC2022): International Symposium on Agroecology and System Approach for Sustainable 1355 (pp. 277-286). https://doi.org/10.17660/ActaHortic.2022.1355.35
  38. Lubell, M., Hillis, V., and Hoffman, M. (2011). Innovation, cooperation, and the perceived benefits and costs of sustainable agriculture practices. Ecology and Society, 16(4). https://doi.org/10.5751/ES-04389-160423.
  39. Lucantoni, D., Sy, M. R., Goïta, M., Veyret-Picot, M., Vicovaro, M., Bicksler, A., and Mottet, A. (2023). Evidence on the multidimensional performance of agroecology in Mali using TAPE. Agricultural Systems, 204: 103499. https://doi.org/10.1016/j.agsy.2022.103499
  40. Maurel, V. B., and Huyghe, C. (2017). Putting agricultural equipment and digital technologies at the cutting edge of agroecology. Ocl, 24(3), D307. https://doi.org/10.1051/ocl/2017028
  41. McGreevy, S. R., Tamura, N., Kobayashi, M., Zollet, S., Hitaka, K., Nicholls, C. I., and Altieri, M. A. (2021). Amplifying agroecological farmer lighthouses in contested territories: navigating historical conditions and forming new clusters in Japan. Frontiers in Sustainable Food Systems, 5: 699694. https://doi.org/10.3389/fsufs.2021.699694
  42. Medici, M., Pedersen, S. M., Canavari, M., Anken, T., Stamatelopoulos, P., Tsiropoulos, Z., … and Tohidloo, G. (2021). A web-tool for calculating the economic performance of precision agriculture technology. Computers and Electronics in Agriculture, 181: 105930. https://doi.org/10.1016/j.compag.2020.105930.
  43. Menozzi, D., Fioravanzi, M., and Donati, M. (2015). Farmer’s motivation to adopt sustainable agricultural practices. Bio-Based and Applied Economics, 4(2): 125–147. https://doi.org/10.13128/BAE-14776
  44. Niggli, U. (2015). Incorporating agroecology into organic research–an ongoing challenge. Sustainable Agriculture Research, 4(3).
  45. Ouattara, S. D., Sib, O., Sanogo, S., Sodre, E., Vall, E., and Berre, D. (2024). Agronomic Assessment of Agroecological technologies codesigned and experimented with the dairy farmers members of the Agroecological Living Landscape of Burkina Faso. Monograph. CIRAD. 2024b. https://agritrop.cirad.fr/611298/
  46. Pardey, P. G., Alston, J. M., and Ruttan, V. W. (2010). The economics of innovation and technical change in agriculture. Handbook of the Economics of Innovation, 2: 939-984. https://doi.org/10.1016/S0169-7218(10)02006-X.
  47. Potters, J., Collins, K., Schoorlemmer, H., Stræte, E. P., Kilis, E., Lane, A., and Leloup, H. (2022). Living labs as an approach to strengthen agricultural knowledge and innovation systems. EuroChoices, 21(1): 23-29. https://doi.org/10.1111/1746-692X.12342.
  48. Poux, X., and Aubert, P. M. (2018). An agroecological Europe in 2050: multifunctional agriculture for healthy eating. Findings from the Ten Years For Agroecology (TYFA) modelling exercise, Iddri-AScA, Study, 9, 18.
  49. Rapisarda, P., Parisi, P., and Mazzamuto, F. (2015). An operative model for regional interventions supporting the citrus sector in Sicily. Quality - Access to Success, 16(S1): 165 - 171.
  50. Rocchi, B., Viccaro, M., and Sturla, G. (2024). An input-output hydro-economic model to assess the economic pressure on water resources. Bio-Based and Applied Economics, 13(2): 203–217. https://doi.org/10.36253/bae-14957
  51. Rosset, P. M., and Altieri, M. A. (2017). Agroecology: science and politics (pp. 160-pp).
  52. Sanz-Cañada, J., Sánchez-Hernández, J. L., and López-García, D. (2023). Reflecting on the concept of local agroecological food systems. Land, 12(6): 1147. https://doi.org/10.3390/land12061147
  53. Schiller, K. J., Klerkx, L., Poortvliet, P. M., and Godek, W. (2020). Exploring barriers to the agroecological transition in Nicaragua: A Technological Innovation Systems Approach. Agroecology and sustainable food systems, 44(1): 88-132. https://doi.org/10.1080/21683565.2019.1602097
  54. Scuderi, A., La Via, G., Timpanaro, G., and Sturiale, L. (2022). The digital applications of “Agriculture 4.0”: Strategic opportunity for the development of the Italian citrus chain. Agriculture, 12(3): 400.
  55. Scuderi, A., Cascone, G., Timpanaro, G., Sturiale, L., La Via, G., and Guarnaccia, P. (2023). Living labs as a method of knowledge value transfer in a natural area. In International Conference on Computational Science and Its Applications (pp. 537-550). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37111-0_37
  56. Scuderi, A., Timpanaro, G., Sturiale, L., Cammarata, M., and Cascone, G. (2024). Evaluation of the “Silvestri Craters on Etna” Living Lab for Knowledge Value Transfer. In International Symposium: New Metropolitan Perspectives (pp. 127-136). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-74608-6_12
  57. Sinclair, F., Wezel, A., Mbow, C., Chomba, C., Robiglio, V., Harrison R. (2019). The contribution of agroecological approaches to realizing climateresilient agriculture. Background Paper. Global Commission on 40 Page 12 of 13 Agron. Sustain. Dev. (2020) 40: 40 Adaptation, Rotterdam. https://cdn.gca.org/assets/201912/TheContributionsOfAgroecologicalApproaches.pdf
  58. Timpanaro, G., Foti, V. T., Cascone, G., Trovato, M., Grasso, A., and Vindigni, G. (2024). Living Lab for the Diffusion of Enabling Technologies in Agriculture: The Case of Sicily in the Mediterranean Context. Agriculture, 14(12): 1-24. https://doi.org/10.3390/agriculture14122347
  59. Timpanaro, G., Pecorino, B., Chinnici, G., Bellia, C., Cammarata, M., Cascone, G., and Scuderi, A. (2023). Exploring innovation adoption behavior for sustainable development of Mediterranean tree crops. Frontiers in Sustainable Food Systems, 7: 1092942. https://doi.org/10.3389/fsufs.2023.1092942
  60. Toffolini, Q., Capitaine, M., Hannachi, M., and Cerf, M. (2021). Implementing agricultural living labs that renew actors’ roles within existing innovation systems: A case study in France. Journal of Rural Studies, 88: 157-168. https://doi.org/10.1016/j.agsy.2023.103661.
  61. Van Der Ploeg, J. D. (2021). The political economy of agroecology. The Journal of Peasant Studies, 48(2): 274-297. https://doi.org/10.1080/03066150.2020.1725489
  62. Van der Ploeg, J. D., Barjolle, D., Bruil, J., Brunori, G., Madureira, L. M. C., Dessein, J., … and Wezel, A. (2019). The economic potential of agroecology: Empirical evidence from Europe. Journal of rural studies, 71: 46-61. https://doi.org/10.1016/j.jrurstud.2019.09.003
  63. Verharen, C., Bugarin, F., Tharakan, J., Wensing, E., Gutema, B., Fortunak, J., and Middendorf, G. (2021). African environmental ethics: Keys to sustainable development through agroecological villages. Journal of Agricultural and Environmental Ethics, 34(3): 18. https://doi.org/10.1007/s10806-021-09853-4
  64. Yousefi, M., and Ewert, F. (2023). Protocol for a systematic review of living labs in agricultural-related systems. Sustainable Earth Reviews, 6(1): 11. https://doi.org/10.1186/s42055-023-00060-9.
  65. Zeng, S., Li, J., and Wanger, T. C. (2023). Agroecology, technology, and stakeholder awareness: Implementing the UN Food Systems Summit call for action. Iscience, 26(9). https://doi.org/10.1016/j.isci.2023.107510