Simultaneous evaluation of dairy farmers’ behaviour and intention to adopt technological devices
Published 2024-08-04
Keywords
- Animal welfare,
- Precision Livestock Farming,
- Dairy cattle,
- PLS-SEM,
- Theory of Planned Behaviour
Copyright (c) 2024 Roberta Selvaggi, Raffaele Zanchini, Carla Zarbà, Biagio Pecorino, Gioacchino Pappalardo
This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
European Regional Development Fund
Grant numbers CUP G69J18001020007
Abstract
Society's awareness of livestock production conditions has increased interest in animal welfare (AW), prompting farmers to consider it in their strategies. However, the adoption of digital devices and sensors to ensure AW is still relatively low. The aim of this study was to assess simultaneously the stated behaviour and intention of dairy farmers towards adopting technological tools for AW. The extended Theory of Planned Behaviour (e-TPB) was selected as theoretical base. It is “extended” since new predictors are integrated in the standard framework of the TPB. The research questions were addressed using a partial least squares structural equation modelling. The findings suggest the existence of a gap between farmers' intentions and behaviour. Perceived Behavioural Control plays a significant role in behaviour, indicating the predominant influence of self-confidence in farmers' choices. Operating margin and technological specialization of the farms are significant predictors of farmers' behavior.
Metrics
References
- Abeni, F., Petrera F., & Galli, A. (2019). A survey of Italian dairy farmers’ propensity for precision livestock farming tools. Animals (Basel), 9(5), 202. DOI: https://doi.org/10.3390/ani9050202
- Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211. DOI: https://doi.org/10.1016/0749-5978(91)90020-T
- Akbar, M. O., Shahaz khan, M. S., Ali, M. J., Hussain, A., Qaiser, G., Pasha, M., Missen, M. S., & Akhtar, N. (2020). IoT for development of smart dairy farming. Journal of Foody Quality, 2020, 4242805, 1–8. DOI: https://doi.org/10.1155/2020/4242805
- Akhigbe, B. I., Munir, K., Akinade, O., Akanbi, L., & Oyedele, L. O. (2021). IoT technologies for livestock management: a review of present status, opportunities, and future trends. Big data and cognitive computing, 5(1), 10. DOI: https://doi.org/10.3390/bdcc5010010
- Alonso, M. E., González-Montaña, J. R., & Lomillos, J. M. (2020). Consumers’ concerns and perceptions of farm animal welfare. Animals, 10(3), 385. DOI: https://doi.org/10.3390/ani10030385
- Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., & Pugliese, C. (2022). Precision livestock farming technologies in pasture-based livestock systems. Animal, 16(1), 100429. DOI: https://doi.org/10.1016/j.animal.2021.100429
- Bagheri, A., & Teymouri, A. (2022). Farmers’ intended and actual adoption of soil and water conservation practices. Agricultural Water Management, 259, 107244. DOI: https://doi.org/10.1016/j.agwat.2021.107244
- Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, P., & Tscharke, M. (2012). Precision livestock farming: an international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5(3), 1–9.
- Bartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational research: determining appropriate sample size in survey research. Information Technology, Learning, and Performance Journal, 19(1), 43–50. DOI: https://doi.org/10.5032/jae.2002.03001
- Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers, 7(1), 6–11. DOI: https://doi.org/10.2527/af.2017.0102
- Bianchi, M. C., Bava L., Sandrucci, A., Tangorra, F. M., Tamburini, A., Gislon, G., & Zucali, M. (2022). Diffusion of precision livestock farming technologies in dairy cattle farms. Animal, 16(11), 100650. DOI: https://doi.org/10.1016/j.animal.2022.100650
- Blanc, S., Massaglia, S., Borra, D., Mosso, A., & Merlino, V. M. (2020). Animal welfare and gender: a nexus in awareness and preference when choosing fresh beef meat?. Italian Journal of Animal Science, 19(1), 410–420. DOI: https://doi.org/10.1080/1828051X.2020.1747952
- Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080), 572. DOI: https://doi.org/10.1136/bmj.314.7080.572
- Borges, J. A. R, de Faria Domingues, C. H., Caldara, F. R., da Rosa, N. P., Senger, I., & Freire Guidolin, D. G. (2019). Identifying the factors impacting on farmers’ intention to adopt animal friendly practices. Preventive Veterinary Medicine, 170, 104718. DOI: https://doi.org/10.1016/j.prevetmed.2019.104718
- Borges, J. A. R., & Lansink, A. G. O. (2016). Identifying psychological factors that determine cattle farmers’ intention to use improved natural grassland. Journal of Environmental Psychology, 45, 89–96. DOI: https://doi.org/10.1016/j.jenvp.2015.12.001
- Chapa, J. M., Maschat, K., Iwersen, M., Baumgartner, J., & Drillich, M. (2020). Accelerometer systems as tools for health and welfare assessment in cattle and pigs–a review. Behavioural Processes, 181, 104262. DOI: https://doi.org/10.1016/j.beproc.2020.104262
- Chavas, J. P., & Nauges, C. (2020). Uncertainty, learning, and technology adoption in agriculture. Applied Economic Perspectives and Policy, 42(1), 42–53. DOI: https://doi.org/10.1002/aepp.13003
- CLAL (2022). Italy: Monthly deliveries of cow milk. Available at: https://www.clal.it/en/?section=consegne_reg_it (accessed 28 April 2023).
- da Borso, F., Kic, P., & Kante, J. (2022). Analysis of management, labor and economics of milking systems in intensive goat farms. Agriculture, 12(4), 513. DOI: https://doi.org/10.3390/agriculture12040513
- Despotović, J., Rodić, V., & Caracciolo, F. (2019). Factors affecting farmers’ adoption of integrated pest management in Serbia: an application of the theory of planned behavior. Journal of Cleaner Production, 228, 1196–1205. DOI: https://doi.org/10.1016/j.jclepro.2019.04.149
- do Valle, P. O., & Assaker, G. (2016). Using partial least squares structural equation modeling in tourism research: a review of past research and recommendations for future applications. Journal of Travel Research, 55(6), 695–708. DOI: https://doi.org/10.1177/0047287515569779
- Dong, H., Zhang, Y., Chen, T., & Li, J. (2023). Acceptance intention and behavioral response to soil-testing formula fertilization technology: an empirical study of agricultural land in Shaanxi Province. International Journal of Environmental Research and Public Health, 20(2), 951. DOI: https://doi.org/10.3390/ijerph20020951
- Dorce, L. C., da Silva, M. C., Mauad, J. R. C., de Faria Domingues, C. H., & Borges, J. A. R. (2021). Extending the theory of planned behavior to understand consumer purchase behavior for organic vegetables in Brazil: the role of perceived health benefits, perceived sustainability benefits and perceived price. Food Quality and Preference, 91, 104191. DOI: https://doi.org/10.1016/j.foodqual.2021.104191
- Ferguson, J. D., Azzaro, G., Gambina, M., & Licitra, G. (2007). Prevalence of Mastitis Pathogens in Ragusa, Sicily, from 2000 to 2006. Journal of Dairy Science, 90(12), 5798–5813. DOI: https://doi.org/10.3168/jds.2006-903
- Fraser, D. (2008). Toward a global perspective on farm animal welfare. Applied Animal Behaviour Science, 113(4), 330–339. DOI: https://doi.org/10.1016/j.applanim.2008.01.011
- Gargiulo, J. I., Eastwood, C. R., Garcia, S. C., & Lyons, N. A. (2018). Dairy farmers with larger herd sizes adopt more precision dairy technologies. Journal of Dairy Science, 101, 5466–5473. DOI: https://doi.org/10.3168/jds.2017-13324
- Gómez, Y., Stygar, A. H., Boumans, I. J. M. M., Bokkers, E. A. M., Pedersen, L. J., Niemi, J. K., Pastell, M., Manteca, X., & Llonch, P. (2021). A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Frontiers in Veterinary Science, 8, 660565. DOI: https://doi.org/10.3389/fvets.2021.660565
- Groher, T., Heitkämper, K., & Umstätter, C. (2020). Digital technology adoption in livestock production with a special focus on ruminant farming. Animal, 14(11), 2404–2413. DOI: https://doi.org/10.1017/S1751731120001391
- Guarino, M., Norton, T., Berckmans, D., Vranken, E., & Berckmans, D. (2017). A blueprint for developing and applying precision livestock farming tools: a key output of the EU-PLF project. Animal Frontiers, 7, 12–17. DOI: https://doi.org/10.2527/af.2017.0103
- Guyomard, H., Bouamra-Mechemache, Z., Chatellier, V., Delaby, L., Détang-Dessendre, C., Peyraud, J. L., & Réquillart, V. (2021). Why and how to regulate animal production and consumption: the case of the European Union. Animal, 15(1), 100283. DOI: https://doi.org/10.1016/j.animal.2021.100283
- Hair, J. F., Hult, T. M., Ringle, C., Sarstedt, M., Magno, F., Cassia, F., & Scafarto, F. (2020). Le equazioni strutturali Partial Least Squares: Introduzione alla PLS-SEM. Milano, Franco Angeli.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139–152. DOI: https://doi.org/10.2753/MTP1069-6679190202
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. DOI: https://doi.org/10.1108/EBR-11-2018-0203
- Hartung, J., Banhazi, T., Vranken, E., & Guarino M. (2017). European farmers’ experiences with precision livestock farming systems. Animal Frontiers, 7(1), 38–44. DOI: https://doi.org/10.2527/af.2017.0107
- Henchion, M. M., Regan, Á., Beecher, M., & MackenWalsh, Á. (2022). Developing ‘smart’ dairy farming responsive to farmers and consumer-citizens: a review. Animals, 12, 360. DOI: https://doi.org/10.3390/ani12030360
- Herlin, A., Brunberg, E., Hultgren, J., Högberg, N., Rydberg, A., & Skarin, A. (2021). Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals, 11, 829. DOI: https://doi.org/10.3390/ani11030829
- Jukan, A., Masip-Bruin, X., & Amla, N. (2017). Smart computing and sensing technologies for animal welfare: a systematic review. ACM Computing Surveys, 50(1), 1–27. DOI: https://doi.org/10.1145/3041960
- Kebebe, E. G., Oosting, S. J., Baltenweck, I., & Duncan, A. J. (2017). Characterisation of adopters and non-adopters of dairy technologies in Ethiopia and Kenya. Tropical Animal Health and Production, 49(4), 681–690. DOI: https://doi.org/10.1007/s11250-017-1241-8
- Kellert, S. (1980). American attitudes toward and knowledge of animals: An update. International Journal for the Study of Animal Problems, 1(2), 87–119.
- Krampe, C., Serratosa, J., Niemi, J. K., & Ingenbleek, P. T. M. (2021). Consumer Perceptions of Precision Livestock Farming–A Qualitative Study in Three European Countries. Animals, 11, 1221. DOI: https://doi.org/10.3390/ani11051221
- Kureshi, S., & Sujo, T. (2019). Online grocery retailing – exploring local grocers beliefs. International Journal of Retail & Distribution Management, 47(2), 157–185. DOI: https://doi.org/10.1108/IJRDM-05-2018-0087
- Licata, M., Ruggeri, R., Iacuzzi, N., Virga, G., Farruggia, D., Rossini, F., & Tuttolomondo, T. (2021). Treatment of combined dairy and domestic wastewater with constructed wetland system in Sicily (Italy). Pollutant removal efficiency and effect of vegetation. Water, 13, 1086. DOI: https://doi.org/10.3390/w13081086
- Lima, E., Hopkins, T., Gurney, E., Shortall, O., Lovatt, F., Davies, P., & Kaler, J. (2018). Drivers for precision livestock technology adoption: a study of factors associated with adoption of electronic identification technology by commercial sheep farmers in england and wales. PLoS ONE, 13(1), e0190489. DOI: https://doi.org/10.1371/journal.pone.0190489
- Loera, B., Murphy, B., Fedi, A., Martini, M., Tecco, N., & Dean, M. (2022). Understanding the purchase intentions for organic vegetables across EU: a proposal to extend the TPB model. British Food Journal, 124(12), 4736–4754. DOI: https://doi.org/10.1108/BFJ-08-2021-0875
- Lomax, S., Colusso, P., & Clark, C. E. F. (2019). Does virtual fencing work for grazing dairy cattle? Animals, 9, 429. DOI: https://doi.org/10.3390/ani9070429
- Lopez-Mosquera, N. (2016). Gender differences, theory of planned behavior and willingness to pay. Journal of Environmental Psychology, 45, 165–175. DOI: https://doi.org/10.1016/j.jenvp.2016.01.006
- Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production?. Journal of Cleaner Production, 262, 121409. DOI: https://doi.org/10.1016/j.jclepro.2020.121409
- Lovarelli, D., Brandolese, C., Leliveld, L., Finzi, A., Riva, E., Grotto, M., & Provolo, G. (2022). Development of a new wearable 3D sensor node and innovative open classification system for dairy cows’ behavior. Animals, 12, 1447. DOI: https://doi.org/10.3390/ani12111447
- Makinde, A., Islam, M. M., Wood, K.M., Conlin, E., Williams, M., & Scott, S. D. (2022). Investigating perceptions, adoption, and use of digital technologies in the Canadian beef industry. Computers and Electronics in Agriculture, 198, 107095. DOI: https://doi.org/10.1016/j.compag.2022.107095
- Mattachini, G., Antler, A., Riva, E., Arbel, A., & Provolo, G. (2013). Automated measurement of lying behavior for monitoring the comfort and welfare of lactating dairy cows. Livestock Science, 158(1-3), 145–150. DOI: https://doi.org/10.1016/j.livsci.2013.10.014
- Mazrier, H., Tal, S., Aizinbud, E., & Bargai, U. (2006). A field investigation of the use of the pedometer for the early detection of lameness in cattle. The Canadian Veterinary Journal, 47(9), 883–886.
- Menozzi, D., Giraud, G., Saïdi, M., & Yeh, C. H. (2021). Choice drivers for quality-labelled food: a cross-cultural comparison on PDO cheese. Foods, 10(6), 1176. DOI: https://doi.org/10.3390/foods10061176
- Menozzi, D., Halawany-Darson, R., Mora, C., & Giraud, G. (2015). Motives towards traceable food choice: a comparison between French and Italian consumers. Food Control, 49, 40–48. DOI: https://doi.org/10.1016/j.foodcont.2013.09.006
- Mensching, A., Zschiesche, M., Hummel, J., Grelet, C., Gengler, N., Dänicke, S., & Sharifi, A. R. (2021). Development of a subacute ruminal acidosis risk score and its prediction using milk mid-infrared spectra in early-lactation cows. Journal of Dairy Science, 104(4), 4615–4634. DOI: https://doi.org/10.3168/jds.2020-19516
- Meuwissen, M. P., Feindt, P. H., Spiegel, A., Termeer, C. J. A. M., Mathijs, E., De Mey, Y., Finger, R., Balmann, A., Wauters, E., Urquhart, J., Vigani, M., Zawalińska, K., Herrera, H., Nicholas-Davies, P., Hansson, H., Paas, W., Slijper, T., Coopmans, I., Vroege, W., Ciechomska, A., Accatino, F., Kopainsky, B., Poortvliet, P. M., Candel, J. J. L., Maye, D., Severini, S., Senni, S., Soriano, B., Lagerkvist, C. J., Peneva, M., Gavrilescu, C., & Reidsma, P. (2019). A framework to assess the resilience of farming systems. Agricultural Systems, 176, 102656. DOI: https://doi.org/10.1016/j.agsy.2019.102656
- Morrone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and Precision Livestock Farming (PLF): an up to date overview across animal productions. Sensors, 22, 4319. DOI: https://doi.org/10.3390/s22124319
- Nadal-Roig, E., Plà-Aragonès, L. M., & Alonso-Ayuso, A. (2019). Production planning of supply chains in the pig industry. Computers and Electronics in Agriculture, 161, 72–78. DOI: https://doi.org/10.1016/j.compag.2018.08.042
- Napolitano, F., Bragaglio, A., Sabia, E., Serrapica, F., Braghieri, A., & De Rosa, G. (2020). The human−animal relationship in dairy animals. Journal of Dairy Research, 87(S1), 47–52. DOI: https://doi.org/10.1017/S0022029920000606
- Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensing and Bio-Sensing Research, 32, 100408. DOI: https://doi.org/10.1016/j.sbsr.2021.100408
- Pfeiffer, J., Gabriel, A., & Gandorfer, M. (2021). Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany. Agriculture and Human Values, 38(1), 107–128. DOI: https://doi.org/10.1007/s10460-020-10145-2
- Pieniak, Z., Aertsens, J., & Verbeke, W. (2010). Subjective and objective knowledge as determinants of organic vegetables consumption. Food Quality and Preference, 21, 581–588. DOI: https://doi.org/10.1016/j.foodqual.2010.03.004
- Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: a literature review. Procedia Technology, 8, 61–69. DOI: https://doi.org/10.1016/j.protcy.2013.11.010
- Poulopoulou, I., Lambertz, C., & Gauly, M. (2019). Are automated sensors a reliable tool to estimate behavioural activities in grazing beef cattle?. Applied Animal Behaviour Science, 216, 1–5. DOI: https://doi.org/10.1016/j.applanim.2019.04.009
- Pugliese, M., Biondi, V., Passantino, A., Licitra, A., Alibrandi, A., Zanghi, A., Conte, F., & Marino, G. (2021). Welfare assessment in intensive and semi-intensive dairy cattle management system in Sicily. Animal Science Journal, 92, e13546. DOI: https://doi.org/10.1111/asj.13546
- Raimondo, M., Hamam, M., D’Amico, M., Caracciolo, F. (2022). Plastic-free behavior of millennials: an application of the theory of planned behavior on drinking choices. Waste Management, 138, 253–261. DOI: https://doi.org/10.1016/j.wasman.2021.12.004
- Ramón-Moragues, A., Carulla, P., Mínguez, C., Villagrá, A., & Estellés, F. (2021). Dairy cows activity under heat stress: a case study in Spain. Animals, 11, 2305. DOI: https://doi.org/10.3390/ani11082305
- Rauw, W. M., Rydhmer, L., Kyriazakis, I., Øverland, M., Gilbert, H., Dekkers, J. C., Hermesch, S., Bouquet, A., Gómez Izquierdo, E., Louveau, I., & Gomez-Raya, L. (2020). Prospects for sustainability of pig production in relation to climate change and novel feed resources. Journal of the Science of Food and Agriculture, 100(9), 3575–3586. DOI: https://doi.org/10.1002/jsfa.10338
- Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of research in Marketing, 26(4), 332–344. DOI: https://doi.org/10.1016/j.ijresmar.2009.08.001
- Rezaei, R., Safa, L., Damalas, C. A., & Ganjkhanloo, M. M. (2019). Drivers of farmers’ intention to use integrated pest management: integrating theory of planned behavior and norm activation model. Journal of Environmental Management, 236, 328–339. DOI: https://doi.org/10.1016/j.jenvman.2019.01.097
- Richards, E., Signal, T., & Taylor, N. (2013). A different cut? Comparing attitudes toward animals and propensity for aggression within two primary industry cohorts—farmers and meatworkers. Society & Animals, 21, 395–413. DOI: https://doi.org/10.1163/15685306-12341284
- Ringle, C. M., Sarstedt, M., Mitchell, R., & Gudergan, S. P. (2020). Partial least squares structural equation modeling in HRM research. The International Journal of Human Resource Management, 31(12), 1617–1643. DOI: https://doi.org/10.1080/09585192.2017.1416655
- Roelofs, J. B., Van Eerdenburg, F. J. C. M., Soede, N. M., & Kemp, B. (2005). Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology, 64, 1690–1703. DOI: https://doi.org/10.1016/j.theriogenology.2005.04.004
- Rowe, E., Dawkins, M. S., & Gebhardt-Henrich, S. G. (2019). A systematic review of precision livestock farming in the poultry sector: is technology focussed on improving bird welfare?. Animals, 9, 614. DOI: https://doi.org/10.3390/ani9090614
- Ruff, C. C., Alexander, I. M., & McKie, C. (2005). The use of focus group methodology in health disparities research. Nursing outlook, 53(3), 134–140. DOI: https://doi.org/10.1016/j.outlook.2005.03.010
- Rutten, C. J., Steeneveld, W., Oude Lansink, A. G. J. M., & Hogeveen, H. (2018). Delaying investments in sensor technology: the rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. Journal of Dairy Science, 101(8), 7650–7660. DOI: https://doi.org/10.3168/jds.2017-13358
- Rutten, C. J., Velthuis, A. G. J., Steeneveld, W., & Hogeveen, H. (2013). Invited review: sensors to support health management on dairy farms. Journal of Dairy Science, 96(4), 1928–1952. DOI: https://doi.org/10.3168/jds.2012-6107
- Santo, N., König von Borstel, U., & Sirovnik, J. (2020). The influence of maternal contact on activity, emotionality and social competence in young dairy calves. Journal of Dairy Research, 87(S1), 138–143. DOI: https://doi.org/10.1017/S0022029920000527
- Sarstedt, M., Radomir, L., Moisescu, O. I., & Ringle, C. M. (2022). Latent class analysis in PLS-SEM: a review and recommendations for future applications. Journal of Business Research, 138, 398–407. DOI: https://doi.org/10.1016/j.jbusres.2021.08.051
- Sarstedt, M., Ringle, C. M., Cheah, J. H., Ting, H., Moisescu, O. I., & Radomir, L. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics, 26(4), 531–554. DOI: https://doi.org/10.1177/1354816618823921
- Savari, M., & Gharechaee, H. (2020). Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. Journal of Cleaner Production, 263, 121512. DOI: https://doi.org/10.1016/j.jclepro.2020.121512
- Schillings, J., Bennett, R., & Rose, D. C. (2021). Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Frontiers in Animal Science, 2, 639678. DOI: https://doi.org/10.3389/fanim.2021.639678
- Shepley, E., Berthelot, M., & Vasseur, E. (2017). Validation of the ability of a 3D pedometer to accurately determine the number of steps taken by dairy cows when housed in tie-stalls. Agriculture, 7(7), 53. DOI: https://doi.org/10.3390/agriculture7070053
- Shepley, E., Lensink, J., Leruste, H., & Vasseur, E. (2020). The effect of free-stall versus strawyard housing and access to pasture on dairy cow locomotor activity and time budget. Applied Animal Behaviour Science, 224, 104928. DOI: https://doi.org/10.1016/j.applanim.2019.104928
- Silva, S. R., Araujo, J. P., Guedes, C., Silva, F., Almeida, M., & Cerqueira, J. L. (2021). Precision technologies to address dairy cattle welfare: focus on lameness, mastitis and body condition. Animals, 11, 2253. DOI: https://doi.org/10.3390/ani11082253
- Silvi, R., Pereira, L. G. R., Paiva, C. A. V., Tomich, T. R., Teixeira, V. A., Sacramento, J. P., & Dórea, J. R. R. (2021). Adoption of precision technologies by brazilian dairy farms: the farmer’s perception. Animals, 11(12), 3488. DOI: https://doi.org/10.3390/ani11123488
- Simitzis, P., Tzanidakis, C., Tzamaloukas, O., & Sossidou, E. (2022). Contribution of precision livestock farming systems to the improvement of welfare status and productivity of dairy animals. Dairy, 3, 12–28. DOI: https://doi.org/10.3390/dairy3010002
- Spina, D., Caracciolo, F., Chinnici, G., Di Vita, G., Selvaggi, R., Pappalardo, G., Pecorino, B., & D’Amico, M. (2023). How do farmers plan to safeguard the environment? Empirical evidence on farmers’ intentions to adopt organic pest management practices. Journal of Environmental Planning and Management, 1–21. DOI: https://doi.org/10.1080/09640568.2023.2218021
- Stachowicz, J., Nasser, R., Adrion, F., & Umstätter, C. (2022). Can we detect patterns in behavioral time series of cows using cluster analysis?. Journal of Dairy Science, 105(12), 9971–9981. DOI: https://doi.org/10.3168/jds.2022-22140
- Stachowicz, J., & Umstätter, C. (2021). Do we automatically detect health- or general welfare-related issues? A framework. Proceedings of the Royal Society B, 288(1950), 20210190. DOI: https://doi.org/10.1098/rspb.2021.0190
- Steeneveld, W., & Hogeveen, H. (2014). Characterization of Dutch dairy farms using sensor systems for cow management. Journal of Dairy Science, 98(1), 709–717. DOI: https://doi.org/10.3168/jds.2014-8595
- Stevenson, P. (2023). Precision livestock farming: could it drive the livestock sector in the wrong direction? Compassion in world farming. Available at: https://www.ciwf.org.uk/research/animal-welfare/precision-livestock-farming-could-it-drive-the-livestock-sector-in-the-wrong-direction/ (accessed 24 July 2023 Month Year).
- Stone, A. E. (2020). Symposium review: The most important factors affecting adoption of precision dairy monitoring technologies. Journal of Dairy Science, 103(6), 5740–5745. DOI: https://doi.org/10.3168/jds.2019-17148
- Stygar, A. H., Gómez, Y., Berteselli, G. V., Dalla Costa, E., Canali, E., Niemi, J. K., Llonch, P., & Pastell, M. (2021). A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Frontiers in Veterinary Science, 8, 634338. DOI: https://doi.org/10.3389/fvets.2021.634338
- Tekin, A., Yurdakök-Dikmen, B., Kanca, H., & Guatteo, R. (2021). Precision livestock farming technologies: novel direction of information flow. Ankara Universitesi Veteriner Fakultesi Dergisi, 68(2), 193–212. DOI: https://doi.org/10.33988/auvfd.837485
- Temple, D., & Manteca, X. (2020). Animal welfare in extensive production systems is still an area of concern. Frontiers in Sustainable Food Systems, 4, 545902. DOI: https://doi.org/10.3389/fsufs.2020.545902
- Timpanaro, G., Chinnici, G., Selvaggi, R., Cascone, G., Foti, V. T., & Scuderi, A. (2023). Farmer’s adoption of agricultural insurance for Mediterranean crops as an innovative behavior. Food Economy, 25(2), art. 7, 155–188. DOI: https://doi.org/10.3280/ecag2023oa14966
- Tobin, C. T., Bailey, D. W., Stephenson, M. B., Trotter, M. G., Knight, C. W., & Faist, A. M. (2022). Opportunities to monitor animal welfare using the five freedoms with precision livestock management on rangelands. Frontiers in Animal Science, 3, 928514. DOI: https://doi.org/10.3389/fanim.2022.928514
- Tullo, E., Finzi, A., & Guarino, M. (2019). Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 650, 2751–2760. DOI: https://doi.org/10.1016/j.scitotenv.2018.10.018
- Umega, R., & Raja, M. A. (2017). Design and implementation of livestock barn monitoring system. 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, India, 2017, 1-6. DOI: https://doi.org/10.1109/IGEHT.2017.8094063
- Vasseur, E. (2017). Animal behavior and well-being symposium: optimizing outcome measures of welfare in dairy cattle assessment. Journal of Animal Science, 95(3), 1365–1371. DOI: https://doi.org/10.2527/jas.2016.0880
- Vázquez, J. J., Cebolla, M. P. C., & Ramos, F. S. (2019). Digital transformation in the spanish agri-food cooperative sector: situation and prospects. CIRIEC-Espana Revista De Economia Publica, Social y Cooperativa, 95, 39-70. DOI: https://doi.org/10.7203/CIRIEC-E.95.13002
- Veissier, I., Kling-Eveillard, F., Mialon, M. M., Silberberg, M., de B. des Roches, A., Terlouw, C., Ledoux, D., Meunier, B., & Hostiou, N. (2019). Precision livestock farming and animal welfare: is the numerical revolution in agriculture able to take into account animals’ and farmers’ needs?. INRA Productions Animales, 32(2), 281–290. DOI: https://doi.org/10.20870/productions-animales.2019.32.2.2478
- Venturini, S., & Mehmetoglu, M. (2019). Plssem: a stata package for structural equation modeling with partial least squares. Journal of Statistical Software, 88, 1–35. DOI: https://doi.org/10.18637/jss.v088.i08
- Wauters, E., Bielders, C., Poesen, J., Govers, G., & Mathijs, E. (2010). Adoption of soil conservation practices in Belgium: an examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy, 27, 86e94. DOI: https://doi.org/10.1016/j.landusepol.2009.02.009
- Yang, X., Zhou, X., & Deng, X. (2022). Modeling farmers’ adoption of low-carbon agricultural technology in jianghan plain, china: An examination of the theory of planned behavior. Technological Forecasting and Social Change, 180, 121726. DOI: https://doi.org/10.1016/j.techfore.2022.121726
- Yatribi, T. (2020). Factors affecting precision agriculture adoption: a systematic literature review. Economics, 8(2), 103–121. DOI: https://doi.org/10.2478/eoik-2020-0013
- Zarbà, C., Bracco, S., Pecorino, B., Pappalardo, G., Chinnici, G., & D’Amico, M. (2022). Supporting Agri-Food SMEs in Italy in the Post-COVID-19 context: from Horizon 2020 to Horizon Europe. Sustainability, 14, 7615. DOI: https://doi.org/10.3390/su14137615
- Zarbà, C., Chinnici, G., La Via, G., Bracco, S., Pecorino, B., & D’Amico, M. (2021). Regulatory elements on the circular economy: driving into the agri-food system. Sustainability, 13, 8350. DOI: https://doi.org/10.3390/su13158350
- Zhang, M., Wang, X., Feng, H., Huang, Q., Xiao, X., & Zhang, X. (2021). Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. Journal of Cleaner Production, 312, 127712. DOI: https://doi.org/10.1016/j.jclepro.2021.127712
- Zhong, Z., Luo, J., Zhang, M. (2015). Understanding antecedents of continuance intention in mobile travel booking service. International Journal of Business and Management, 10(9), 156–162. DOI: https://doi.org/10.5539/ijbm.v10n9p156