Vol. 85 (2024)
Original Articles - Urban, Land, Environmental Appraisal and Economics

Alternative methods for measuring the influence of location in hedonic pricing models

Marco Aurelio Stumpf Gonzalez
Polytechnic School, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
Diego Alfonso Erba
Independent researcher and consultant

Published 2025-02-14

Keywords

  • Location quality,
  • Hedonic modeling,
  • Machine Learning,
  • Fuzzy logic,
  • Kriging

Abstract

The effects of location play a crucial role in the real estate market, encompassing aspects of accessibility and neighborhood. However, these are elements that are not directly measurable. There are traditional ways to consider location, usually through subjective measures based on professional experience, through proxy variables. Understanding these elements is vital for estimating real estate values, whether for legal, commercial, or tax purposes. Furthermore, seeking more objective options is a relevant issue to broaden the justification of estimated values and to enable the development of mass appraisal models. This article proposes and evaluates alternative solutions based on statistics, machine learning, and geostatistics to estimate location. A study was conducted using market data from Novo Hamburgo, southern Brazil, verifying the feasibility of the options presented. Satisfactory statistical results demonstrate the viability of the proposed approach.

References

  1. Allen, M. T., Austin, G. W., & Swaleheen, M. (2015). Measuring highway impacts on house prices using spatial regression. Journal of Sustainable Real Estate, 7(1), 83–98. http://aresjournals.org/doi/abs/10.5555/1949-8276-7.1.83 DOI: https://doi.org/10.1080/10835547.2015.12091876
  2. Anselin, L. (1998). GIS research infrastructure for spatial analysis of real estate markets. Journal of Housing Research, 9(1), 113–134. DOI: https://doi.org/10.1080/10835547.1998.12091930
  3. Associação Brasileira de Normas Técnicas - ABNT (2011). NBR 14653-2: avaliação de bens parte 2: avaliação de bens parte 2: imóveis urbanos. Rio de Janeiro.
  4. Balchin, P. N., & Kieve, J. L. (1986). Urban land economics. 3 ed. London, MacMillan.
  5. Balchin, P. N., Bull, G. H., & Kieve, J. L. (1995). Urban land economics and public policy. 5 ed. New York, Bloomsbury Publishing. DOI: https://doi.org/10.1007/978-1-349-13652-0
  6. Ball, M. J. (1973). Recent empirical work on the determinants of relative house prices. Urban Studies, 10, 213–233. DOI: https://doi.org/10.1080/00420987320080311
  7. Bartik, T. J., & Smith, V. K. (1987). Urban amenities and public policy. In Mills, E. S. (Ed). Handbook of regional and urban economics, v.2 (urban economics). Amsterdam, Elsevier, 1207–1254. DOI: https://doi.org/10.1016/S1574-0080(87)80017-2
  8. Boyle, M. A., & Kiel, K. A. (2001). A survey of house price hedonic studies of the impact of environmental externalities. Journal of Real Estate Literature, 9(2), 117–144. DOI: https://doi.org/10.1080/10835547.2001.12090098
  9. Can, A. (1998). GIS and spatial analysis of housing and mortgage markets. Journal of Housing Research, 9(1), 61–86. DOI: https://doi.org/10.1080/10835547.1998.12091927
  10. Can, A. (1990). The measurement of neighborhood dynamics in urban house prices. Economic Geography, 66(3), 254–272. DOI: https://doi.org/10.2307/143400
  11. Cohen, J. P., Cromley, R. G., & Banach, K. T. (2015). Are homes near water bodies and wetlands worth more or less? An analysis of housing prices in one Connecticut town. Growth and Change, 46(1), 114–132. https://doi.org/10.1111/grow.12073 DOI: https://doi.org/10.1111/grow.12073
  12. D’Amato, M. (2017). Location value response surface model as automated valuation methodology a case in Bari. In D’amato, M., & Kauko, T. (Eds). Advances in Automated Valuation Modeling. Studies in Systems, Decision and Control, vol. 86. Cham, Springer. https://doi.org/10.1007/978-3-319-49746-4_10 DOI: https://doi.org/10.1007/978-3-319-49746-4_10
  13. D’Acci, Luca. (2019). Quality of urban area, distance from city centre, and housing value. Case study on real estate values in Turin. Cities, 91, 71–92. DOI: https://doi.org/10.1016/j.cities.2018.11.008
  14. D’Amato, M., Kauko, T. (eds). (2017). Advances in Automated Valuation Modeling. Studies in Systems, Decision and Control, vol 86. Cham, Springer. https://doi.org/10.1007/978-3-319-49746-4_10 DOI: https://doi.org/10.1007/978-3-319-49746-4
  15. Dantas, R. A. (2012). Engenharia de avaliações: uma introdução à metodologia científica. 3 ed. São Paulo, PINI.
  16. Derycke, P. H. (1971). La economia urbana. Madrid, IEAL.
  17. Din, A., Hoesli, M., & Bender, A. (2001). Environmental variables and real estate prices. Urban Studies, 38(11), 1989–2000. DOI: https://doi.org/10.1080/00420980120080899
  18. Ding, C., Simons, R., & Baku, E. (2000). The effect of residential investment on nearby property values: evidence from Cleveland, Ohio. Journal of Real Estate Research, 19(1/2), 23–48. DOI: https://doi.org/10.1080/10835547.2000.12091011
  19. Dubin, R. A. (1988). Estimation of regression coefficients in the presence of spatially autocorrelated error terms. Review of Economics and Statistics, 70(3), 466–474. DOI: https://doi.org/10.2307/1926785
  20. Dubin, R. A. (1998). Predicting house prices using multiple listings data. Journal of Real Estate Finance and Economics, 17(1), 35–59. DOI: https://doi.org/10.1023/A:1007751112669
  21. Dubin, R. A. (1992). Spatial autocorrelation and neighbourhood quality. Regional Science and Urban Economics, 22(3), 433–452. DOI: https://doi.org/10.1016/0166-0462(92)90038-3
  22. Dubin, R. A., & Sung, C. H. (1987). Spatial variation in the price of housing: rent gradients in nonmonocentric cities. Urban Studies, 24(3), 193–204. DOI: https://doi.org/10.1080/00420988720080331
  23. Dubois, D. J., & Prade, H. (1980). Fuzzy sets and systems: theory and applications. New York, Academic Press.
  24. Gallimore, P., Fletcher, M., & Carter, M. (1996). Modelling the influence of location on value, Journal of Property Valuation and Investment, 14(1), 6–19. DOI: https://doi.org/10.1108/14635789610107444
  25. González, M. A. S. (2017). Automated valuation methods in real estate market - A two-level fuzzy system. In D’Amato, M., & Kauko, T. (Eds.). Advances in Automated Valuation Modeling. Studies in Systems, Decision and Control, vol 86. Cham, Springer International Publishing., 265–278. DOI: https://doi.org/10.1007/978-3-319-49746-4_15
  26. González, M. A. S., Soibelman, L., & Formoso, C. T. (2002). A new approach to spatial analysis in CAMA. In 9th European Real Estate Society Conference (ERES 2002), June, 2002, Glasgow. Glasgow: ERES.
  27. González, M. A. S. (2003). Metodologia de avaliação de imóveis. Novo Hamburgo, SGE.
  28. Goodman, A. C. (1978). Hedonic prices, price indices and housing markets. Journal of Urban Economics, 5(4), p. 471–484. https://doi.org/10.1016/0094-1190(78)90004-9 DOI: https://doi.org/10.1016/0094-1190(78)90004-9
  29. Griliches, Z. (1971). Price indexes and quality change. Cambridge, Harvard University Press. DOI: https://doi.org/10.4159/harvard.9780674592582
  30. Gujarati, D. N. (2000). Econometria básica. São Paulo, Makron Books.
  31. Harvey, D. (2006). Spaces of global capitalism: towards a theory of uneven geographical development. London; New York, Verso.
  32. Harvey, J. (1996). Urban land economics. 4 ed. London, MacMillan. DOI: https://doi.org/10.1007/978-1-349-24441-6
  33. Helbich, M., Brunauer, W., Hagenauer, J., & Leitner, M. (2013). Data-driven regionalization of housing markets. Annals of the Association of American Geographers, 103(4), 871–889. https://doi.org/10.1080/00045608.2012.707587 DOI: https://doi.org/10.1080/00045608.2012.707587
  34. Jud, G. D., & Watts, J. M. (1981). Schools and housing values. Land Economics, 57(3), 459–470. DOI: https://doi.org/10.2307/3146025
  35. Kain, J. F., & Quigley, J. M. (1970). Measuring the value of housing quality. Journal of the American Statistical Association, 65(330), 532–548. DOI: https://doi.org/10.1080/01621459.1970.10481102
  36. Kauko, T., & D’Amato, M. (2008). Mass Appraisal Methods. An international perspective for property valuers. Oxford, Blackwell. DOI: https://doi.org/10.1002/9781444301021
  37. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132–157. http://www.jstor.org/stable/1828835 DOI: https://doi.org/10.1086/259131
  38. Lang, J. R., & Jones, W. H. (1975). Hedonic property valuation models: are subjective measures of neighborhood amenities needed? AREUEA Journal, 7(4), 451–465. DOI: https://doi.org/10.1111/1540-6229.t01-20-00201
  39. Lavender, S. D. (1990). Economics for builders and surveyors. Essex, Longman.
  40. Lefebvre, H. (1991). The production of space. Oxford, Basil Blackwell.
  41. Li, M. M., & Brown, H. J. (1980). Micro-neighbourhood externalities and hedonic housing prices. Land Economics, 56(2), 125–141. DOI: https://doi.org/10.2307/3145857
  42. Li, W., Joh, K., Lee, C., Kim, J. H., Park, H., & Woo, A. (2015). Assessing benefits of neighborhood walkability to single-family property values: a spatial hedonic study in Austin, Texas. Journal of Planning Education and Research, 35(4), 471–488. https://doi.org/10.1177/0265813516663932 DOI: https://doi.org/10.1177/0739456X15591055
  43. Lucena, J. M. P. D. (1985). O mercado habitacional no Brasil. Rio de Janeiro, Fundação Getúlio Vargas (Série Teses, n.9).
  44. Malpezzi, S. (2002). Hedonic pricing models: a selective and applied review. The Center for Urban Land Economics Research, Madison, University of Wisconsin. DOI: https://doi.org/10.1002/9780470690680.ch5
  45. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. DOI: https://doi.org/10.2113/gsecongeo.58.8.1246
  46. Mccluskey, W. J., Deddis, W. G., Lamont, I. G., & Borst, R. A. (2000). The application of surface generated interpolation models for the prediction of residential property values. Journal of Property Investment and Finance, 18(2), 162–176. DOI: https://doi.org/10.1108/14635780010324321
  47. Miller, R. L., & Kahn, J. S. (1962). Statistical analysis in the geological sciences. New York, John Wiley.
  48. Muth, R. F. (1975). Urban economic problems. New York, Harper and Row.
  49. Nguyen, H. T., & Walker, E. A. (2019). A first course in fuzzy logic. 4 ed. Boca Ratón, CRC Press, Taylor & Francis Book. DOI: https://doi.org/10.1201/9780429505546
  50. Robinson, R. (1979). Housing economics and public policy. London, MacMillan. DOI: https://doi.org/10.1007/978-1-349-16069-3
  51. Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy, 82(1), 34–55. DOI: https://doi.org/10.1086/260169
  52. Sander, H. A., & Haight, R. G. (2012). Estimating the economic value of cultural ecosystem services in an urbanizing area using hedonic pricing. Journal of Environmental Management, 113, 194–205. https://doi.org/10.1016/j.jenvman.2012.08.031 DOI: https://doi.org/10.1016/j.jenvman.2012.08.031
  53. Saphores, J. D., & Li, W. (2012). Estimating the value of urban green areas: a hedonic pricing analysis of the single family housing market in Los Angeles, CA. Landscape and Urban Planning, 104(3), 373–387. https://doi.org/10.1016/j.landurbplan.2011.11.012 DOI: https://doi.org/10.1016/j.landurbplan.2011.11.012
  54. Smith, L. B., Rosen, K. T., & Fallis, G. (1988). Recent development in economic models of housing markets, Journal of Economic Literature, 26(1), 29–64. DOI: https://doi.org/10.2307/143917
  55. Straszheim, M. (1987). The theory of urban residential location. In Mills, E. S. (Ed). Handbook of regional and urban economics, v.2 (urban economics). Amsterdam, Elsevier, 717–757. DOI: https://doi.org/10.1016/S1574-0080(87)80004-4
  56. Swoboda, A., Nega, T., & Timm, M. (2015). Hedonic analysis over time and space: the case of house prices and traffic noise. Journal of Regional Science, 55(4), 644–670. https://doi.org/10.1111/jors.12187 DOI: https://doi.org/10.1111/jors.12187
  57. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240. DOI: https://doi.org/10.2307/143141
  58. Vargas-Calderón, V., & Camargo, J. E. (2022). Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy. Journal of the Operational Research Society, 73(12), 2794–2807. https://doi.org/10.1080/01605682.2021.2023672 DOI: https://doi.org/10.1080/01605682.2021.2023672
  59. Ward, R. D., Weaver, J. R, & German, J. C. (1999). Improving CAMA models using geographic information systems/response surface analysis location factors. Assessment Journal, 6, 30–38.
  60. Welch, T. F., Gehrke, S. R., & Wang, F. (2016). Long-term impact of network access to bike facilities and public transit stations on housing sales prices in Portland, Oregon. Journal of Transport Geography, 54, 264–272. http://dx.doi.org/10.1016/j.jtrangeo.2016.06.016 DOI: https://doi.org/10.1016/j.jtrangeo.2016.06.016
  61. Wyatt, P. (1996a). The development of a property information system for valuation using a geographical information system (GIS). Journal of Property Research, 13(4), 317–336. DOI: https://doi.org/10.1080/095999196368826
  62. Wyatt, P. (1996b). Using a geographical information system for property valuation. Journal of Property Valuation and Investment, 14(1), 67–79. DOI: https://doi.org/10.1108/14635789610107507