Vol. 84 (2024)
Original Articles - Urban, Land, Environmental Appraisal and Economics

Machine learning models in mass appraisal for property tax purposes: a systematic mapping study

Carlos Augusto Zilli
Federal Institute of Santa Catarina (IFSC), Florianópolis
Bio
Lia Caetano Bastos
Federal University of Santa Catarina (UFSC), Florianópolis
Bio
Liane Ramos da Silva
Federal University of Santa Catarina (UFSC), Florianópolis
Bio

Published 2024-08-04

Keywords

  • Mass property appraisal,
  • Machine learning,
  • Property valuations,
  • Appraisal for property tax,
  • Systematic mapping study

Abstract

The use of machine learning models in mass appraisal of properties for tax purposes has been extensively investigated, generating a growing volume of primary research. This study aims to provide an overview of the machine learning techniques used in this context and analyze their accuracy. We conducted a systematic mapping study to collect studies published in the last seven years that address machine learning methods in the mass appraisal of properties. The search protocols returned 332 studies, of which 22 were selected, highlighting the frequent use of Random Forest and Gradient Boosting models in the last three years. These models, especially Random Forest, have shown predictive superiority over traditional appraisal methods. The measurement of model performance varied among the studies, making it difficult to compare results. However, it was observed that the use of machine learning techniques improves accuracy in mass property appraisals. This article advances the field by summarizing the state of the art in the use of machine learning models for mass appraisal of properties for tax purposes, describing the main models applied, providing a map that classifies, compares, and evaluates the research, and suggesting a research agenda that identifies gaps and directs future studies.

Metrics

Metrics Loading ...

References

  1. Almaslukh, B. (2021). A gradient boosting method for effective prediction of housing prices in complex real estate systems. In International Conference on Technologies and Applications of Artificial Intelligence (TAAI), 217–222. https://doi.org/10.1109/taai51410.2020.00047 DOI: https://doi.org/10.1109/TAAI51410.2020.00047
  2. Aydinoglu, A. C., Bovkir, R., & Colkesen, I. (2020). Implementing a mass valuation application on interoperable land valuation data model designed as an extension of the national GDI. Survey Review, 53, 349–365. https://doi.org/10.1080/00396265.2020.1771967 DOI: https://doi.org/10.1080/00396265.2020.1771967
  3. Benito, B. M. (2021). SpatialRF: Easy Spatial Regression with Random Forest. R package version 1.1.3. https://doi.org/10.5281/zenodo.5525027 DOI: https://doi.org/10.32614/CRAN.package.spatialRF
  4. Bicak, D. (2021). Geographical random forest model evaluation in agricultural drought assessment. Master thesis. Charles University, Faculty of Science, Department of Applied Geoinformatics and Cartography. Prague, 2021.
  5. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
  6. Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80, 571–583. https://doi.org/10.1016/j.jss.2006.07.009 DOI: https://doi.org/10.1016/j.jss.2006.07.009
  7. Budgen, D., Turner, M., Brereton, P., & Kitchenham, B. A. (2008). Using mapping studies in software engineering. In Proceedings of Psychology of Programming Interest Group (PPIG), 8, 195–204. https://ppig.org/files/2008-PPIG-20th-budgen.pdf
  8. Carranza, J. P., Piumetto, M. A., Lucca, C. M., & da Silva, E. (2022). Mass appraisal as affordable public policy: open data and machine learning for mapping urban land values. Land Use Policy, 119, 106211. https://doi.org/10.1016/j.landusepol.2022.106211 DOI: https://doi.org/10.1016/j.landusepol.2022.106211
  9. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7, 1525–1534. https://doi.org/10.5194/gmd-7-1247-2014 DOI: https://doi.org/10.5194/gmdd-7-1525-2014
  10. Chen, L., Babar, M. A., & Zhang, H. (2010). Towards an Evidence-Based Understanding of Electronic Data Sources. In Proceedings of the 14th International Conference on Evaluation and Assessment in Software Engineering (EASE), British Computer Society, Swinton, pp 135–138. https://doi.org/10.14236/ewic/ease2010.17 DOI: https://doi.org/10.14236/ewic/EASE2010.17
  11. Dimopoulos, T., & Bakas, N. P. (2019). Sensitivity Analysis of Machine Learning Models for the Mass Appraisal of Real Estate. Case Study of Residential Units in Nicosia, Cyprus. Remote Sensing, 11(24), 3047. https://doi.org/10.3390/rs11243047 DOI: https://doi.org/10.3390/rs11243047
  12. Doumpos, M., Papastamos, D., Andritsos, D. A., & Zopounidis, C. (2021). Developing automated valuation models for estimating property values: a comparison of global and locally weighted approaches. Annals of Operations Research, 306, 415–433. https://doi.org/10.1007/s10479-020-03556-1 DOI: https://doi.org/10.1007/s10479-020-03556-1
  13. Fontoura Júnior, C. F., Uberti, M. S., & Tachibana, V. M. (2020). Mass appraisal of apartment through geographically weighted regression. Boletim de Ciências Geodésicas, 26, e2020005. https://doi.org/10.1590/s1982-21702020000200005 DOI: https://doi.org/10.1590/s1982-21702020000200005
  14. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189–1232. https://doi.org/10.1214/aos/1013203451 DOI: https://doi.org/10.1214/aos/1013203451
  15. Garcia, D. C. F, Gattaz, C. C., & Gattaz, N. C. (2019). A relevância do título, do resumo e de palavras-chave para a escrita de artigos científicos. Revista de Administração Contemporânea, 23(3), 1–9. https://doi.org/10.1590/1982-7849rac2019190178. DOI: https://doi.org/10.1590/1982-7849rac2019190178
  16. Gnat, S. (2021). Property Mass Valuation on Small Markets. Land, 10(4), 388. https://doi.org/10.3390/land10040388 DOI: https://doi.org/10.3390/land10040388
  17. Ho, W., Tang, B., & Wong, S. W. (2020). Predicting property prices with machine learning algorithms. Journal of Property Research, 38, 48–70. https://doi.org/10.1080/09599916.2020.1832558 DOI: https://doi.org/10.1080/09599916.2020.1832558
  18. Hong, J., Choi, H., & Kim, W. (2020). A house price valuation based on the random forest approach: the mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140–152. https://doi.org/10.3846/ijspm.2020.11544 DOI: https://doi.org/10.3846/ijspm.2020.11544
  19. IAAO (2013). Standard on Ratio Studies. International Association of Assessing Officers. Kansas City, IAAO.
  20. IEEE (2022). The Impact of Technology in 2022 and Beyond: IEEE Global Survey. Available at: https://transmitter.ieee.org/impact-of-technology-2022/ (accessed 23 May 2022)
  21. Islam, M. D., Li, B., Lee, C., & Wang, X. (2022). Incorporating spatial information in machine learning: The Moran eigenvector spatial filter approach. Transactions in GIS, 26, 902–922. https://doi.org/10.1111/tgis.12894 DOI: https://doi.org/10.1111/tgis.12894
  22. Ja’afar, N.S., Mohamad, J., & Ismail, S. (2021). Machine learning for property price prediction and price valuation: a systematic literature review. Planning Malaysia, 19(3), 411–422. https://doi.org/10.21837/pm.v19i17.1018 DOI: https://doi.org/10.21837/pm.v19i17.1018
  23. Kim, J., Lee, Y., Lee, M., & Hong, S. (2022). A comparative study of machine learning and spatial interpolation methods for predicting house prices. Sustainability, 14(15), 9056. https://doi.org/10.3390/su14159056 DOI: https://doi.org/10.3390/su14159056
  24. Kitchenham, B. A., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, 55, 2049–2075. https://doi.org/10.1016/j.infsof.2013.07.010 DOI: https://doi.org/10.1016/j.infsof.2013.07.010
  25. Kitchenham, B. A., & Charters, S. (2007). Guidelines for performing systematic literature reviews. In Software Engineering, Technical Report EBSE- 2007-01, 1-57. Departament of Computer Science Keele University, Keele.
  26. Kitchenham, B. A., Brereton, P., & Budgen, D. (2010). The educational value of mapping studies of software engineering literature. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, Volume 1, 589–598. https://doi.org/10.1145/1806799.1806887 DOI: https://doi.org/10.1145/1806799.1806887
  27. Kitchenham, B. A., Mendes, E., & Travassos, G. H. (2007). Cross versus within-company cost estimation studies: a systematic review. IEEE Transactions on Software Engineering, 33, 316-329. https://doi.org/10.1109/tse.2007.1001 DOI: https://doi.org/10.1109/TSE.2007.1001
  28. Liporoni, A. S. (2014). Avaliação em massa com ênfase em planta de valores. In IBAPE/SP Engenharia de Avaliações, 2. ed., 2, 664.
  29. Manasa, J., Gupta, R., & Narahari, N. (2021). Machine learning based predicting house prices using regression techniques. In Proceedings of the 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA 2020), 624–630. https://doi.org/10.1109/icimia48430.2020.9074952 DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074952
  30. Mayer, M., Bourassa, S.C., Hoesli, M. & Scognamiglio, D. (2019). Estimation and updating methods for hedonic valuation. Journal of European Real Estate Research, 12(1), 134–150. https://doi.org/10.1108/JERER-08-2018-0035 DOI: https://doi.org/10.1108/JERER-08-2018-0035
  31. McCluskey, W., Deddis, W. G., Mannis, A., McBurney, D., & Borst, R. A. (1997). Interactive application of computer assisted mass appraisal and geographic information systems. Journal of Property Valuation and Investment, 15, 448–465. https://doi.org/10.1108/14635789710189227 DOI: https://doi.org/10.1108/14635789710189227
  32. Mete, M. O., & Yomralioglu, T. (2022). GIS & machine learning based mass appraisal of residential properties in England & Wales. In 30th Annual Geographical Information Science Research UK (GISRUK). https://doi.org/10.5281/zenodo.6410120
  33. Nakamura, W. T., Oliveira, E., Oliveira, E. H., Redmiles, D. F., & Conte, T. (2022). What factors affect the UX in mobile apps? A systematic mapping study on the analysis of app store reviews. Journal of Systems and Software, 193, 111462. https://doi.org/10.1016/j.jss.2022.111462 DOI: https://doi.org/10.1016/j.jss.2022.111462
  34. Nejad, M. Z., Lu, J., & Behbood, V. (2017). Applying dynamic Bayesian tree in property sales price estimation. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 1–6. https://doi.org/10.1109/ISKE.2017.8258810 DOI: https://doi.org/10.1109/ISKE.2017.8258810
  35. Nejad, M. Z., Lu, J., Asgari, P., & Behbood, V. (2016). The effect of google drive distance and duration in residential property in Sydney, Australia. In World Scientific Proceedings Series on Computer Engineering and Information Science. https://doi.org/10.1142/9789813146976_0101 DOI: https://doi.org/10.1142/9789813146976_0102
  36. Niu, J., & Niu, P. (2019). An intelligent automatic valuation system for real estate based on machine learning. In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC19), 1–6. https://doi.org/10.1145/3371425.3371454 DOI: https://doi.org/10.1145/3371425.3371454
  37. Pai, P., & Wang, W. (2020). Using machine learning models and actual transaction data for predicting real estate prices. Applied Sciences, 10(17), 5832. https://doi.org/10.3390/app10175832 DOI: https://doi.org/10.3390/app10175832
  38. Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic Mapping Studies in Software Engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE). BCS Learning & Development. https://doi.org/10.14236/EWIC/EASE2008.8 DOI: https://doi.org/10.14236/ewic/EASE2008.8
  39. Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: an update. Information and Software Technology, 64, 1–18. https://doi.org/10.1016/j.infsof.2015.03.007 DOI: https://doi.org/10.1016/j.infsof.2015.03.007
  40. Rodríguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J. M., & Oivo, M. (2017). Continuous deployment of software intensive products and services: a systematic mapping study. Journal of Systems and Software, 123, 263–291. https://doi.org/10.1016/j.jss.2015.12.015 DOI: https://doi.org/10.1016/j.jss.2015.12.015
  41. Sevgen, S. C., & Aliefendioglu, Y. (2020). Mass apprasial with a machine learning algorithm: random forest regression. Journal of Information Technologies, 13(3), 301–311 . https://doi.org/10.17671/gazibtd.555784 DOI: https://doi.org/10.17671/gazibtd.555784
  42. Steurer, M., Hill, R., & Pfeifer, N. (2021). Metrics for evaluating the performance of machine learning based automated valuation models. Journal of Property Research, 38, 99–129. https://doi.org/10.1080/09599916.2020.1858937 DOI: https://doi.org/10.1080/09599916.2020.1858937
  43. Su, H., Shen, W., Wang, J., Ali, A., & Li, M. (2020). Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosystems, 7, 1–20. https://doi.org/10.1186/s40663-020-00276-7 DOI: https://doi.org/10.1186/s40663-020-00276-7
  44. Uberti, M. S., Antunes, M. A., Debiasi, P., & Tassinari, W. D. (2018). Mass appraisal of farmland using classical econometrics and spatial modeling. Land Use Policy, 72, 161–170. https://doi.org/10.1016/j.landusepol.2017.12.044 DOI: https://doi.org/10.1016/j.landusepol.2017.12.044
  45. Uludag, O., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C., & Matthes, F. (2022). Revealing the state of the art of large-scale agile development research: a systematic mapping study. Journal of Systems and Software, 194, 111473. https://doi.org/10.1016/j.jss.2022.111473 DOI: https://doi.org/10.1016/j.jss.2022.111473
  46. Valier, A., & Micelli, E. (2020). Automated models for value prediction: a critical review of the debate. Valori e Valutazioni, 24, 151–162. https://www.researchgate.net/publication/348962087
  47. Velumani, P., Priyadharshini, B., Mukilan, K., & Shanmugapriya (2022). A mass appraisal assessment study of land values using spatial analysis and multiple regression analysis model (MRA). Materials Today: Proceedings, 66, 2614–2625. https://doi.org/10.1016/j.matpr.2022.07.224 DOI: https://doi.org/10.1016/j.matpr.2022.07.224
  48. Wang, D., & Li, V. J. (2019). Mass appraisal models of real estate in the 21st century: a systematic literature review. Sustainability, 11(24), 7006. https://doi.org/10.3390/su11247006 DOI: https://doi.org/10.3390/su11247006
  49. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., & Regnell, B. (2012). Experimentation in Software Engineering. Heidelberg, Springer Science & Business Media. https://doi.org/10.1007/978-3-642-29044-2 DOI: https://doi.org/10.1007/978-3-642-29044-2
  50. Xu, L., & Li, Z. (2021). A new appraisal model of second-hand housing prices in China’s first-tier cities based on machine learning algorithms. Computational Economics, 57, 617–637. https://doi.org/10.1007/s10614-020-09973-5 DOI: https://doi.org/10.1007/s10614-020-09973-5
  51. Yan, Z., & Zong, L. (2020). Spatial prediction of housing prices in beijing using machine learning algorithms. In Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence, 64–71. https://doi.org/10.1145/3409501.3409543 DOI: https://doi.org/10.1145/3409501.3409543
  52. Yee, L.W., Bakar, N. A., Hassan, N. H., Zainuddin, N. M., Yusoff, R. C., & Rahim, N. Z. (2021). using machine learning to forecast residential property prices in overcoming the property overhang issue. In 2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 1–6. https://doi.org/10.1109/iicaiet51634.2021.9573830 DOI: https://doi.org/10.1109/IICAIET51634.2021.9573830
  53. Yilmazer, S., & Kocaman, S. (2020). A mass appraisal assessment study using machine learning based on multiple regression and random forest. Land Use Policy, 99, 104889. https://doi.org/10.1016/j.landusepol.2020.104889 DOI: https://doi.org/10.1016/j.landusepol.2020.104889
  54. Zhang, R., Du, Q., Geng, J., Liu, B., & Huang, Y. (2015). An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a case study. Habitat International, 46, 196–205. https://doi.org/10.1016/j.habitatint.2014.12.001 DOI: https://doi.org/10.1016/j.habitatint.2014.12.001
  55. Zhao, Y., Chetty, G., & Tran, D. T. (2019). Deep Learning with XGBoost for Real Estate Appraisal. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), 1396–1401. https://doi.org/10.1109/SSCI44817.2019.9002790 DOI: https://doi.org/10.1109/SSCI44817.2019.9002790