Vol. 86 Suppl. 1, 2025
Original Articles - Urban, Land, Environmental Appraisal and Economics

Integrating Spatial Analysis, Ecosystem Services and Cost Analysis for Nature-Based Solution (NBS) planning in urban contexts

Giulia Datola
Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Italy
Alessandra Oppio
Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Italy
Marta Dell'Ovo
Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Italy
Marco Rossitti
Department of Architecture, Built Environment, and Construction Engineering (DABC), Politecnico di Milano, Italy
Danny Casprini
Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Italy
Giulia Tarantino
Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Italy
Francesca Torrieri
Department of Architecture, Built Environment, and Construction Engineering (DABC), Politecnico di Milano, Italy

Published 2025-10-31

Keywords

  • Nature-Based Solution (NBS),
  • Ecosystem Services (ES),
  • urban vulnerability,
  • cost estimation,
  • integrated evaluation framework,
  • Spatial analysis
  • ...More
    Less

Abstract

Nature-Based Solutions (NBS) are suggested as strategies to mitigate climate change effects in urban contexts. However, cities face issues in planning with NBS due to the lack of a comprehensive evaluation framework to properly support the strategic integration of NBS in urban planning. This research aims to fill this gap by proposing a multi-step evaluation framework to firstly identify the most suitable intervention area, and secondly provide an overall evaluation of NBS interventions according to both cost and benefits. The proposed model has been applied to the city of Milan to identify the most urgent areas for NBS implementation, according to multidimensional vulnerability maps. Three NBS alternative scenarios have been compared with the business-as-usual scenario and evaluated according to costs and benefits accounted through Ecosystem Services. The evaluation results are monetary and non-monetary values, useful for supporting decision processes for NBS planning in urban contexts. 

References

  1. Abhijith, K. V, Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla, F., Broderick, B., Di Sabatino, S., & Pulvirenti, B. (2017). Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmospheric Environment, 162, 71–86. https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.05.014
  2. Assumma, V., Datola, G., Quagliolo, C., & Oppio, A. (2023). Evaluating nature-based solutions impacts: a preliminary framing of assessment methods. In Gervasi, O., Murgante, B. Rocha, A. M. A. C., Garau, C., Scorza, F., Karaka, Y., & Torre, C. M. (Eds.). Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14108. Cham, Springer, 512–527. https://doi.org/10.1007/978-3-031-37117-2_35
  3. Babí Almenar, J., Petucco, C., Rugani, B., Egusquiza, A., Arana Bollar, M., Larrey-Lassalle, P., Pousse, M., Musseti, A., Yilmaz, Ö., Basoglu, D., Szkordilisz, F., Körmöndi, B., Kraus, F., Laïlle, P., Serna, V., Martín, S., Köroglu, T., Hevizi, B., Breton Ramos, E. M., Donati, R., Colombo, S. (2018). Development of a multi-scale system dynamics assessment framework for nature-based solutions in cities – Deliverable 4.1 of Nature4Cities (“Nature Based Solutions for re-naturing cities: knowledge diffusion and decision support platform through new collaborative models”). European Commission Grant Agreement No. 730468. Released by the Luxembourg Institute of Science and Technology (LIST).
  4. Babí Almenar, J., Petucco, C., Sonnemann, G., Geneletti, D., Elliot, T., & Rugani, B. (2023). Modelling the net environmental and economic impacts of urban nature-based solutions by combining ecosystem services, system dynamics and life cycle thinking: an application to urban forests. Ecosystem Services, 60, 101506. https://doi.org/https://doi.org/10.1016/j.ecoser.2022.101506
  5. Bartesaghi Koc, C., Osmond, P., & Peters, A. (2018). Evaluating the cooling effects of green infrastructure: a systematic review of methods, indicators and data sources. Solar Energy, 166, 486–508. https://doi.org/https://doi.org/10.1016/j.solener.2018.03.008
  6. Barton, D. N., Kelemen, E., Dick, J., Martin-Lopez, B., Gómez-Baggethun, E., Jacobs, S., Hendriks, C. M. A., Termansen, M., García- Llorente, M., Primmer, E., Dunford, R., Harrison, P. A., Turkelboom, F., Saarikoski, H., van Dijk, J., Rusch, G. M., Palomo, I., Yli-Pelkonen, V. J., Carvalho, L., … Lapola, D. M. (2018). (Dis) integrated valuation – Assessing the information gaps in ecosystem service appraisals for governance support. Ecosystem Services, 29, 529–541. https://doi.org/10.1016/j.ecoser.2017.10.021
  7. Beceiro, P., Brito, R. S., & Galvão, A. (2022). Assessment of the contribution of Nature-Based Solutions (NBS) to urban resilience: application to the case study of Porto. Ecological Engineering, 175, 106489. https://doi.org/https://doi.org/10.1016/j.ecoleng.2021.106489
  8. Biasin, A., Masiero, M., Amato, G., & Pettenella, D. (2023). Nature-based solutions modeling and cost-benefit analysis to face climate change risks in an urban area: the case of Turin (Italy). Land, 12(2), 280. https://doi.org/10.3390/land12020280
  9. Camacho-Caballero, D., Langemeyer, J., Segura-Barrero, R., Ventura, S., Beltran, A. M., & Villalba, G. (2024). Assessing Nature-based solutions in the face of urban vulnerabilities: a multi-criteria decision approach. Sustainable Cities and Society, 103, 105257. https://doi.org/10.1016/j.scs.2024.105257
  10. Caprioli, C., Bottero, M., & Mondini, G. (2020). Urban ecosystem services: a review of definitions and classifications for the identification of future research perspectives. In Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B. O., Rocha, A. M. A. C., Tarantino, E., Torre, C. M., & Karaca, Y. (Eds.). Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12253. Cham, Springer, 332–344. https://doi.org/10.1007/978-3-030-58814-4_23
  11. Carter, T. R., Benzie, M., Campiglio, E., Carlsen, H., Fronzek, S., Hildén, M., Reyer, C. P. O., & West, C. (2021). A conceptual framework for cross-border impacts of climate change. Global Environmental Change, 69, 102307. https://doi.org/10.1016/j.gloenvcha.2021.102307
  12. Castellar, J. A. C., Popartan, L. A., Pueyo-Ros, J., Atanasova, N., Langergraber, G., Säumel, I., Corominas, L., Comas, J., & Acuña, V. (2021). Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Science of The Total Environment, 779, 146237. https://doi.org/10.1016/j.scitotenv.2021.146237
  13. Chaves, M. T. R., Farias, T. R. L., & Eloi, W. M. (2024). Comparative analysis of bioretention design strategies for urban runoff infiltration: a critical overview. Ecological Engineering, 207. https://doi.org/10.1016/j.ecoleng.2024.107352
  14. Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C. R., Renaud, F. G., Welling, R., & Walters, G. (2019). Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 98, 20–29. https://doi.org/10.1016/j.envsci.2019.04.014
  15. Collins, C. M. T., Cook-Monie, I., & Raum, S. (2019). What do people know? Ecosystem services, public perception and sustainable management of urban park trees in London, U.K. Urban Forestry & Urban Greening, 43, 126362. https://doi.org/10.1016/j.ufug.2019.06.005
  16. Comune di Milano. (2023). Piano AriaClima. Available at: https://www.comune.milano.it/documents/20126/430903598/Piano+Aria+Clima+-+Approvato+-220325.pdf/bb865fc9-f37b-a90a-b4d1-ff595e7162ef?t=1652093098404 (Accessed 2 July 2025).
  17. Costanza, R., Cumberland, J. H., Daly, H., Goodland, R., & Norgaard, R. B. (1997). An Introduction to Ecological Economics. Boca Raton, CRC Press.
  18. Cristiano, E., Urru, S., Farris, S., Ruggiu, D., Deidda, R., & Viola, F. (2020). Analysis of potential benefits on flood mitigation of a CAM green roof in Mediterranean urban areas. Building and Environment, 183, 107179. https://doi.org/10.1016/j.buildenv.2020.107179
  19. Cutter, S. L. (2016). Resilience to What? Resilience for Whom? The Geographical Journal, 182(2), 110–113. https://doi.org/10.1111/geoj.12174
  20. Datola, G., & Oppio, A. (2023). NBS design and implementation in urban systems: dimensions, challenges and issues to construct a comprehensive evaluation framework. In Gervasi, O., Murgante, B., Rocha, A. M. A. C., Garau, C., Scorza, F., Karaka, Y., & Torre, C. M. (Eds.). Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14108. Cham, Springer, 444–454. https://doi.org/10.1007/978-3-031-37117-2_30
  21. Davies, C., Chen, W. Y., Sanesi, G., & Lafortezza, R. (2021). The European Union roadmap for implementing nature-based solutions: a review. Environmental Science & Policy, 121, 49–67. https://doi.org/10.1016/j.envsci.2021.03.018
  22. de Magalhães, R. F., Danilevicz, Â. de M. F., & Palazzo, J. (2019). Managing trade-offs in complex scenarios: a decision-making tool for sustainability projects. Journal of Cleaner Production, 212, 447–460. https://doi.org/10.1016/j.jclepro.2018.12.023
  23. Di Pirro, E., Roebeling, P., Sallustio, L., Marchetti, M., & Lasserre, B. (2023). Cost-effectiveness of Nature-Based Solutions under different implementation scenarios: a national perspective for Italian urban areas. Land, 12(3), 603. https://doi.org/10.3390/land12030603
  24. Dumitru, A., Frantzeskaki, N., & Collier, M. (2020). Identifying principles for the design of robust impact evaluation frameworks for nature-based solutions in cities. Environmental Science & Policy, 112, 107–116. https://doi.org/10.1016/j.envsci.2020.05.024
  25. Eisenberg, B., & Polcher, V. (2019). Nature Based Solutions – Technical Handbook, Part II. Urban Nature Labs. https://doi.org/10.13140/RG.2.2.24970.54726
  26. Eisenberg, B., Chiesa, C., Fischer, L. K., Jakstis, K., Polcher, V., & Schwarz-v. Raumer, H.-G. (2022). Nature-based Solutions. Technical Handbook Factsheets. UNaLab URBAN NATURE LABS, Institut für Landschaftsplanung und Ökologie – ILPÖ.
  27. Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G., & Lafortezza, R. (2019). Urban forests, ecosystem services, green infrastructure and nature-based solutions: nexus or evolving metaphors? Urban Forestry & Urban Greening, 37, 3–12. https://doi.org/10.1016/j.ufug.2018.02.011
  28. European Commission (2015). Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities – Final report of the Horizon 2020 expert group on ‘Nature-based solutions and re-naturing cities’ – (full version). Directorate-General for Research and Innovation. Publications Office. https://data.europa.eu/doi/10.2777/479582
  29. European Commission. (2021). Evaluating the impact of nature-based solutions – A handbook for practitioners. Publications Office of the European Union. https://doi.org/doi/10.2777/244577
  30. European Environment Agency. (2021). Nature-based solutions in Europe: Policy, knowledge and practice for climate change adaptation and disaster risk reduction. In EEA Report , No 01/2021. Publications Office of the European Union, Luxembourg. Available at: https://www.eea.europa.eu/publications/nature-based-solutions-in-europe (Accessed 2 July 2025).
  31. Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-Based Solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environmental Research, 159, 509–518. https://doi.org/10.1016/j.envres.2017.08.032
  32. Fang, X., Li, J., & Ma, Q. (2023). Integrating green infrastructure, ecosystem services and nature-based solutions for urban sustainability: a comprehensive literature review. Sustainable Cities and Society, 98, 104843. https://doi.org/10.1016/j.scs.2023.104843
  33. Gaona Currea, J. A., Larrinaga López, J., León Sarmiento, J., Ortega Minakata, A. T., Gorrotxategi Carbajo, J., Soto Trujillo, C., Camacho Otero, J., & Ortiz de Urbina, I. (2024). Ecohydrological Nature based-Solutions for Sustainable Cities: A Case Study based on Water Security and Modeling. IOP Conference Series: Earth and Environmental Science, 1363(1), 012076. https://doi.org/10.1088/1755-1315/1363/1/012076
  34. Geneletti, D., Cortinovis, C., Orta-Ortiz, M. S., Kato-Huerta, J., Longato, D., & Falco, E. (2022). Mainstreaming Nature-Based Solutions in cities through performance-based planning: a case study in Trento, Italy. In Mahmoud, I. H., Morello, E., Lemes de Oliveira, F., & Geneletti, D. (Eds.). Nature-based solutions for sustainable urban planning. contemporary urban design thinking. Cham, Springer, 19 – 46. https://doi.org/10.1007/978-3-030-89525-9_2
  35. Giordano, R., Pluchinotta, I., Pagano, A., Scrieciu, A., & Nanu, F. (2020). Enhancing nature-based solutions acceptance through stakeholders’ engagement in co-benefits identification and trade-offs analysis. Science of The Total Environment, 713, 136552. https://doi.org/10.1016/j.scitotenv.2020.136552
  36. Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235–245. https://doi.org/10.1016/j.ecolecon.2012.08.019
  37. Hayes, A., Jandaghian, Z., Lacasse, M., Gaur, A., Lu, H., Laouadi, A., Ge, H., & Wang, L. (2022). Nature-Based Solutions (NBSs) to mitigate Urban Heat Island (UHI) effects in Canadian cities. Buildings, 12(7), 925. https://doi.org/10.3390/buildings12070925
  38. Hoeben, A. D., & Posch, A. (2021). Green roof ecosystem services in various urban development types: a case study in Graz, Austria. Urban Forestry & Urban Greening, 62, 127167. https://doi.org/10.1016/j.ufug.2021.127167
  39. Huynh, H. L. T., Do, A. T., & Dao, T. M. (2020). Climate change vulnerability assessment for Can Tho city by a set of indicators. International Journal of Climate Change Strategies and Management, 12(1), 147–158. https://doi.org/10.1108/IJCCSM-01-2018-0003
  40. Kabisch, N., Korn, H., Stadler, J., & Bonn, A. (2017). Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice. Cham, Springer. https://doi.org/10.1007/978-3-319-56091-5
  41. La Rosa, D., & Privitera, R. (2022). Innovation in Urban and Regional Planning. INPUT 2021. Lecture Notes in Civil Engineering, vol 242. Cham, Springer. https://doi.org/10.1007/978-3-030-96985-1
  42. Lafortezza, R., & Sanesi, G. (2019). Nature-based solutions: settling the issue of sustainable urbanization. Environmental Research, 172, 394–398. https://doi.org/10.1016/j.envres.2018.12.063
  43. Langemeyer, J., Wedgwood, D., McPhearson, T., Baró, F., Madsen, A. L., & Barton, D. N. (2020). Creating urban green infrastructure where it is needed – A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Science of the Total Environment, 707, 135487. https://doi.org/10.1016/j.scitotenv.2019.135487
  44. Le Coent, P., Graveline, N., Altamirano, M. A., Arfaoui, N., Benitez-Avila, C., Biffin, T., Calatrava, J., Dartee, K., Douai, A., Gnonlonfin, A., Hérivaux, C., Marchal, R., Moncoulon, D., & Piton, G. (2021). Is-it worth investing in NBS aiming at reducing water risks? Insights from the economic assessment of three European case studies. Nature-Based Solutions, 1, 100002. https://doi.org/10.1016/j.nbsj.2021.100002
  45. Leary, N., Adejuwon, J., Barros, V., Burton, I., Kulkarni, J., & Lasco, R. (2008). Climate change and adaptation. London, Earthscan.
  46. Longato, D., Cortinovis, C., Balzan, M., & Geneletti, D. (2023). A method to prioritize and allocate nature-based solutions in urban areas based on ecosystem service demand. Landscape and Urban Planning, 235, 104743. https://doi.org/10.1016/j.landurbplan.2023.104743
  47. Lu, L., Johnson, M., Zhu, F., Xu, Y., Ruan, T., & Chan, F. K. S. (2024). Harnessing the runoff reduction potential of urban bioswales as an adaptation response to climate change. Scientific Reports, 14(1), 12207. https://doi.org/10.1038/s41598-024-61878-7
  48. Marando, F., Heris, M. P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., Parastatidis, D., & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564. https://doi.org/10.1016/j.scs.2021.103564
  49. Masiero, M., Biasin, A., Amato, G., Malaggi, F., Pettenella, D., Nastasio, P., & Anelli, S. (2022). Urban forests and green areas as Nature-Based Solutions for brownfield redevelopment: a case study from Brescia Municipal area (Italy). Forests, 13(3), 444. https://doi.org/10.3390/f13030444
  50. McHarg, I. L. (1995). Design with Nature. Hoboken, John Wiley & Sons.
  51. Mok, S., Mačiulytė, E., Bult, P. H., & Hawxwell, T. (2021). Valuing the invaluable(?)—a framework to facilitate stakeholder engagement in the planning of nature-based solutions. Sustainability, 13(5), 1–16. https://doi.org/10.3390/su13052657
  52. Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Science of The Total Environment, 579, 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
  53. Olivieri, F., Sassenou, L.-N., & Olivieri, L. (2024). Potential of Nature-Based Solutions to diminish urban heat island effects and improve outdoor thermal comfort in summer: case study of Matadero Madrid. Sustainability, 16(7), 2778. https://doi.org/10.3390/su16072778
  54. Oppio, A., & Dell’Ovo, M. (2020). Strategic Environmental Assessment (SEA) and Multi-Criteria Analysis: An Integrated Approach. In G. Campeol (Ed.). Strategic Environmental Assessment and Urban Planning: Methodological Reflections and Case Studies. Cham, Springer, 47–63. https://doi.org/10.1007/978-3-030-46180-5_4
  55. Oukawa, G. Y., Krecl, P., Targino, A. C., & Batista, L. F. A. (2024). Advantages of modeling the urban heat island intensity: a tool for implementing nature-based solutions. Sustainable Cities and Society, 102, 105204. https://doi.org/10.1016/j.scs.2024.105204
  56. Pereira, P., Yin, C., & Hua, T. (2023). Nature-based solutions, ecosystem services, disservices, and impacts on well-being in urban environments. Current Opinion in Environmental Science & Health, 33, 100465. https://doi.org/10.1016/j.coesh.2023.100465
  57. Ramírez-Agudelo, N. A., Porcar Anento, R., Villares, M., & Roca, E. (2020). Nature-Based Solutions for water management in peri-urban areas: barriers and lessons learned from implementation experiences. Sustainability, 12(23). https://doi.org/10.3390/su12239799
  58. Ravanello, L., Lavoro, D., Farnè, E., Lombardi, R., Poli, F., Pinosa, F., Salomoni, M. T., Tagliaferri, R., & Zorzin, V. (2019). Liberare il suolo. Linee guida su desealing e rigenerazione urbana. Available at: https://www.sos4life.it/wp-content/uploads/Linee-guida-per-la-resilienza-urbana-vol.-2.pdf (Accessed 2 July 2025).
  59. Raymond, C., Breil, M., Nita, M., Kabisch, N., de Bel, M., Enzi, V., Frantzeskaki, N., Geneletti, G., Lovinger, L., Cardinaletti, M., Basnou, C., Monteiro, A., Robrecht, H., Sgrigna, G., Muhari, L., Calfapietra, C., & Berry, P. (2017). An impact evaluation framework to support planning and evaluation of nature-based solutions projects. Report prepared by the EKLIPSE Expert Working Group on Nature-based Solutions to Promote Climate Resilience in Urban Areas. Centre for Ecology and Hydrology.
  60. Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., Geneletti, D., & Calfapietra, C. (2017). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environmental Science & Policy, 77, 15–24. https://doi.org/10.1016/j.envsci.2017.07.008
  61. Reu Junqueira, J., Serrao‐Neumann, S., & White, I. (2023). Developing and testing a cost‐effectiveness analysis to prioritize green infrastructure alternatives for climate change adaptation. Water and Environment Journal, 37(2), 242–255. https://doi.org/10.1111/wej.12832
  62. Romanello, M., van Daalen, K., Anto, J. M., Dasandi, N., Drummond, P., Hamilton, I. G., Jankin, S., Kendrovski, V., Lowe, R., Rocklöv, J., Schmoll, O., Semenza, J. C., Tonne, C., & Nilsson, M. (2021). Tracking progress on health and climate change in Europe. The Lancet Public Health, 6(11), e858–e865. https://doi.org/10.1016/S2468-2667(21)00207-3
  63. Rossitti, M., Oppio, A., Torrieri, F., & Dell’Ovo, M. (2023). Tactical urbanism interventions for the urban environment: which economic impacts? Land, 12(7). https://doi.org/10.3390/land12071457
  64. Rossitti, M., & Torrieri, F. (2021a). Circular economy as ‘catalyst’ for resilience in inner areas. Sustainable Mediterranean Construction. Land Culture, Research And Technology, 2021(5), 64–67.
  65. Rossitti, M., & Torrieri, F. (2021b). How to manage conflicting values in minor islands: a MCDA methodology towards alternative energy solutions assessment. In Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B. O., Rocha, A. M. A. C., Tarantino, E. & Torre, C. M. (Eds.). Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Cham, Springer, 582–598. https://doi.org/10.1007/978-3-030-87007-2_42
  66. Salm, J. A. P., Bočkarjova, M., Botzen, W. J. W., & Runhaar, H. A. C. (2023). Citizens’ preferences and valuation of urban nature: insights from two choice experiments. Ecological Economics, 208, 107797. https://doi.org/10.1016/j.ecolecon.2023.107797
  67. Semeraro, T., Scarano, A., & Pandey, R. (2022). Ecosystem services analysis and design through Nature-Based Solutions in urban planning at a neighbourhood scale. Urban Science, 6(1), 23. https://doi.org/10.3390/urbansci6010023
  68. Sikorska, D., Macegoniuk, S., Łaszkiewicz, E., & Sikorski, P. (2020). Energy crops in urban parks as a promising alternative to traditional lawns – Perceptions and a cost-benefit analysis. Urban Forestry & Urban Greening, 49, 126579. https://doi.org/10.1016/j.ufug.2019.126579
  69. Silva, D. A. L., Filleti, R. A. P., Musule, R., Matheus, T. T., & Freire, F. (2022). A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America. Renewable and Sustainable Energy Reviews, 157, 112042. https://doi.org/10.1016/j.rser.2021.112042
  70. Soto-Montes-de-Oca, G., Cruz-Bello, G. M., & Bark, R. H. (2023). Enhancing megacities’ resilience to flood hazard through peri-urban nature-based solutions: evidence from Mexico City. Cities, 143. https://doi.org/10.1016/j.cities.2023.104571
  71. Sowińska-Świerkosz, B., & García, J. (2021). A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Science of The Total Environment, 787, 147615. https://doi.org/10.1016/j.scitotenv.2021.147615
  72. Stange, E. E., Barton, D. N., Andersson, E., & Haase, D. (2022). Comparing the implicit valuation of ecosystem services from nature-based solutions in performance-based green area indicators across three European cities. Landscape and Urban Planning, 219, 104310. https://doi.org/10.1016/j.landurbplan.2021.104310
  73. Tapia, C., Abajo, B., Feliu, E., Mendizabal, M., Martinez, J. A., Fernández, J. G., Laburu, T., & Lejarazu, A. (2017). Profiling urban vulnerabilities to climate change: an indicator-based vulnerability assessment for European cities. Ecological Indicators, 78, 142–155. https://doi.org/10.1016/j.ecolind.2017.02.040
  74. Urban Green (2022). In Brears, R.C. (Ed.). The Palgrave Encyclopedia of Urban and Regional Futures. Cham, Palgrave Macmillan, 2015–2015. https://doi.org/10.1007/978-3-030-87745-3_300768
  75. Watkin, L. J., Ruangpan, L., Vojinovic, Z., Weesakul, S., & Torres, A. S. (2019). A framework for assessing benefits of implemented nature-based solutions. Sustainability, 11(23), 6788. https://doi.org/10.3390/su11236788
  76. Wickenberg, B., McCormick, K., & Olsson, J. A. (2021). Advancing the implementation of nature-based solutions in cities: A review of frameworks. Environmental Science & Policy, 125, 44–53. https://doi.org/https://doi.org/10.1016/j.envsci.2021.08.016
  77. Wild, T., Baptista, M., Wilker, J., Kanai, J. M., Giusti, M., Henderson, H., Rotbart, D., Espinel, J. D. A., Hernández-Garcia, J., Thomasz, O., & Kozak, D. (2024). Valuation of urban nature-based solutions in Latin American and European cities. Urban Forestry and Urban Greening, 91. https://doi.org/10.1016/j.ufug.2023.128162
  78. Wild, T., Freitas, T., & Vandewoestijne, S. (2020). Nature-based solutions : state of the art in EU-funded projects Publications Office of the European Union, Luxembourg. https://doi.org/doi/10.2777/236007
  79. Zanini, S. F., de Carli, A., Rizzo, A., Conte, G., & Masi, F. (2024). Monetization of ecosystem services from Nature-Based Solutions for agricultural diffuse pollution control: simplified value transfer method at European scale. Water, 16(6), 898. https://doi.org/10.3390/w16060898
  80. Zölch, T., Henze, L., Keilholz, P., & Pauleit, S. (2017). Regulating urban surface runoff through nature-based solutions – An assessment at the micro-scale. Environmental Research, 157, 135–144. https://doi.org/10.1016/j.envres.2017.05.023