Vol. 29 No. 1 (2025): BEYOND DECARBONIZATION toward a Climate Neutral urban environment
Research and Experimentation

Biotechnologies and urban greening: the Zero Mile approach

Attilio Nebuloni
Dipartimento di Design, Politecnico di Milano, Italia
Bio
Fiammetta Costa
Dipartimento di Design, Politecnico di Milano, Italia
Giorgio Buratti
Dipartimento di Design, Politecnico di Milano, Italia
Matteo Meraviglia
Dipartimento di Design, Politecnico di Milano, Italia
Luciana Migliore
Dipartimento di Biologia, Università di Roma Tor Vergata, Italia
Annamaria Alabiso
Dipartimento di Biologia, Università di Roma Tor Vergata, Italia
Valerio Cantelmo
Dipartimento di Biologia, Università di Roma Tor Vergata, Italia

Published 2025-07-31

Keywords

  • environmental design,
  • wastewater management,
  • greening urbano,
  • biophilic design,
  • biotecnologie

How to Cite

Nebuloni, A., Costa, F., Buratti, G., Meraviglia, M., Migliore, L., Alabiso, A., & Cantelmo, V. (2025). Biotechnologies and urban greening: the Zero Mile approach. TECHNE - Journal of Technology for Architecture and Environment, 29(1), 195–204. https://doi.org/10.36253/techne-16529

Abstract

Among the strategies capable of addressing the multiple challenges related to achieving the NetZero target, urban greening is not only a strategy to increase the energy efficiency of buildings but also an opportunity to design new scenarios of biophilic living, capable of re-establishing positive connections between people and nature in the built environment. In this context, an area of study of growing interest focuses on the sustainable recovery of domestic greywater for reuse in buildings for irrigation purposes. The paper outlines the results of an interdisciplinary research project, which, through bio-filtration processes, enables the recovery of wastewater from household appliances to supply green architecture solutions.

Downloads

Download data is not yet available.

References

  1. Anderson, J. et al. (2008), “Public acceptance of water reuse”, in Jimenez, B. and Asano, T. (Eds.), Water Reuse: An International Survey of current practice, issues and needs, IWA, London.
  2. Barbagallo, S. et al. (2003), “Wastewater reuse in Italy”, in WS&T, 43(10): 43-50. Available at: https://doi.org/10.2166/wst.2001.0576
  3. Bichai, F. et al. (2018), “Addressing Barriers in the Water-Recycling Innovation System”, in Journal of Cleaner Production, 171: 97-109. Available at: https://doi.org/10.1016/j.jclepro.2016.07.062
  4. Congestri, R. et al. (2019), “The biological filter for an innovative Sustainable Product System to recycle domestic wastewater”, in European Recent Advances in the Microalgae Field, EuAlgae COST Action, Madrid.
  5. Costa, F. and Nebuloni, A. (2021), The Jetsons’ kitchen. A zero-mile system for wastewater recycling and cultivation, FrancoAngeli, Milano.
  6. Feeny, D. et al. (1990), “The Tragedy of the Commons”, in Human Ecology, 18(1): 1-19. Available at: https://doi.org/10.1007/BF00889070
  7. Gonçalves, A.L. et al. (2017), “A review on the use of microalgal consortia for wastewater treatment”, in Algal Research, 24: 403-415. Available at: https://doi.org/10.1016/j.algal.2016.11.008
  8. Karana, E. et al. (2020), “Living Artefacts: Conceptualizing Livingness as a Material Quality in Everyday Artefacts”, in International Journal of Design, 14: 37-53.
  9. Kellert, S. and Wilson, E. (1993), The Biophilia Hypothesis, Island Press, Washington.
  10. Kellert, S. and Calabrese, E. (2015), The Practice of Biophilic Design. Available at: http://www.biophilic-design.com
  11. Kunz, N.C. et al. (2016), “Drivers for and against municipal wastewater recycling: A review”, in WS&T, 73(2): 251-259. Available at: https://doi.org/10.2166/wst.2015.496
  12. Marres, N. (2012), Material Participation: Technology, the Environment and Everyday Publics, Palgrave Macmillan, London.
  13. Nebuloni, A. et al. (2019), “Zero-kilometre plants production”, in Ambrosio, M. and Vezzoli, C. (Eds.), Designing sustainability for all, POLI.design, Milano.
  14. Posadas, E. et al. (2013), “Carbon and nutrient removal from centrates and domestic wastewater using algal–bacterial biofilm bioreactors”, in Bioresource Technology, 139: 50-58. Available at: https://doi.org/10.1016/j.biortech.2013.04.008
  15. Posadas, E. et al. (2017), “Microalgae cultivation in wastewaters”, in Muñoz R. and González C. (Eds.), Microalgae-Based Biofuels and Bioproducts, Elsevier, 67-91.
  16. Prutzer et al., (2023), “Rethinking responsibility in precision agriculture innovation: lessons from an interdisciplinary research team”, in Journal of Responsible Innovation, 10(1): 13. Available at: https://doi.org/10.1080/23299460.2023.2202093
  17. Stappers, P.J. and Giaccardi, E. (2017), “Research through Design”, in Soegaard, M. and Friis-Dam, R. (Eds.), The Encyclopedia of Human-Computer Interaction, The Interaction Design Foundation.
  18. Volontè, P. and Grana, M. (2021), “What people think: Attitudes towards recycling, recycling for food use, and a prototype eco-dishwasher”, in Costa F. and Nebuloni A. (Eds.), The Jetsons’ kitchen, FrancoAngeli, Milano.
  19. Walk, H. and Dierich, A. (2014), “Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings”, in Agriculture and Human Values, Springer Nature, (31). Available at: https://doi.org/10.1007/s10460-013-9448-4
  20. Weisser, W.W. et al. (2023), “Creating ecologically sound buildings by integrating ecology, architecture and computational design”, in People and Nature, Wiley & Sons, 5: 4–20. Available at: https://doi.org/10.1002/pan3.10411
  21. WWAP, United Nations World Water Assessment Programme (2017), “The United Nations World Water Development Report 2017”, in Wastewater: The Untapped Resource, Paris, UNESCO. Available at: https://doi.org/10.18356/df181e6f-en