Just Accepted Manuscripts
Original Research Article

Barriers and Drivers in the Adoption of New Genomic Techniques for Grapevines

Lara Agnoli
CEREN EA 7477, Burgundy School of Business, School of Wine and Spirits Business, Université Bourgogne Europe, Dijon, France
Efi Vasileiou
CEREN EA 7477, Burgundy School of Business, Université Bourgogne Europe, Dijon, France
Federica Demaria
CREA - Research Centre for Agricultural Policies and Bioeconomy, Rome, Italy

Published 2025-10-10

Keywords

  • New Genomic Techniques,
  • grape growers,
  • barriers,
  • drivers

How to Cite

Agnoli, L., Vasileiou, E., & Demaria, F. (2025). Barriers and Drivers in the Adoption of New Genomic Techniques for Grapevines. Wine Economics and Policy. https://doi.org/10.36253/wep-18295

Abstract

Severe climate conditions and fungal diseases have significantly impacted global wine production, reaching its lowest levels in decades. While vineyards struggle with these challenges, the European Green Deal seeks to reduce pesticide use. Developing resilient grape varieties with strong quality standards is essential for the industry's future. This study examines how European producers perceive New Genomic Techniques (NGTs), innovative methods that enhance plant traits without adding foreign DNA, improving grape resistance to environmental and biological stresses while promoting more sustainable production. Employing qualitative methods, semi-structured interviews were conducted across six major wine-producing countries. Thematic analysis revealed a complex and diverse range of opinions. Growers recognized NGTs' potential to optimize resource management, enhance climate resilience, and reduce production costs, directly contributing to more sustainable practices. However, significant barriers were identified, including ethical concerns, consumer acceptance, influenced by misinformation and fear of new technologies, and legislative uncertainties, particularly the EU's regulatory framework. Furthermore, farmers' knowledge gaps and adherence to traditional methods posed internal barriers. The need for transparent communication was highlighted as a critical factor, as well as the importance of addressing these multiple challenges through stakeholder engagement and informed policymaking.

References

  1. OIV, ‘State of the World Vine and Wine Sector in 2024’, 2025. [Online]. Available: https://www.oiv.int/sites/default/files/2025-04/OIV-State_of_the_World_Vine-and-Wine-Sector-in-2024.pdf
  2. Y. Chen et al., ‘Winegrowers’ decision-making: A pan-European perspective on pesticide use and inter-row management’, J. Rural Stud., vol. 94, pp. 37–53, Aug. 2022, doi: 10.1016/j.jrurstud.2022.05.021. DOI: https://doi.org/10.1016/j.jrurstud.2022.05.021
  3. E. Pomarici and R. Vecchio, ‘Will sustainability shape the future wine market?’, Wine Econ. Policy, vol. 8, no. 1, pp. 1–4, Jun. 2019, doi: 10.1016/j.wep.2019.05.001. DOI: https://doi.org/10.1016/j.wep.2019.05.001
  4. R. Lassoued, P. W. B. Phillips, D. M. Macall, H. Hesseln, and S. J. Smyth, ‘Expert opinions on the regulation of plant genome editing’, Plant Biotechnol. J., vol. 19, no. 6, pp. 1104–1109, 2021, doi: 10.1111/pbi.13597. DOI: https://doi.org/10.1111/pbi.13597
  5. EU Directive 18. 2001. Accessed: Jul. 26, 2024. [Online]. Available: https://eur-lex.europa.eu/eli/dir/2001/18/oj
  6. EUR-Lex, ‘Precautionary principle’. Accessed: Jul. 25, 2024. [Online]. Available: https://eur-lex.europa.eu/EN/legal-content/glossary/precautionary-principle.html
  7. T. Sprink, R. Wilhelm, and F. Hartung, ‘Genome editing around the globe: An update on policies and perceptions’, Plant Physiol., vol. 190, no. 3, pp. 1579–1587, Nov. 2022, doi: 10.1093/plphys/kiac359. DOI: https://doi.org/10.1093/plphys/kiac359
  8. E. Woźniak-Gientka et al., ‘Public perception of plant gene technologies worldwide in the light of food security’, GM Crops Food, vol. 13, no. 1, pp. 218–241, Dec. 2022, doi: 10.1080/21645698.2022.2111946. DOI: https://doi.org/10.1080/21645698.2022.2111946
  9. S. Lemarié and S. Marette, ‘The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: A scoping review’, Trends Food Sci. Technol., vol. 129, pp. 38–48, Nov. 2022, doi: 10.1016/j.tifs.2022.07.013. DOI: https://doi.org/10.1016/j.tifs.2022.07.013
  10. J. Menary and S. S. Fuller, ‘New genomic techniques, old divides: Stakeholder attitudes towards new biotechnology regulation in the EU and UK’, PLOS ONE, vol. 19, no. 3, p. e0287276, Mar. 2024, doi: 10.1371/journal.pone.0287276. DOI: https://doi.org/10.1371/journal.pone.0287276
  11. Nature Plants, ‘EU rethinks genome editing’, Nat. Plants, vol. 9, no. 8, pp. 1169–1170, Aug. 2023, doi: 10.1038/s41477-023-01505-x. DOI: https://doi.org/10.1038/s41477-023-01505-x
  12. EU Regulation proposal P9_TA 0067. 2024. Accessed: Jul. 25, 2024. [Online]. Available: https://www.europarl.europa.eu/doceo/document/TA-9-2024-0067_EN.html
  13. A. Meldolesi, ‘Eco-vandals target gene-edited Chardonnay in Italy’, CRISPeR FRENZY. Accessed: Feb. 19, 2025. [Online]. Available: https://mycrispr.blog/2025/02/16/eco-vandals-target-gene-edited-chardonnay-in-italy/
  14. M. Borrello, L. Cembalo, and R. Vecchio, ‘Consumers’ acceptance of fungus resistant grapes: Future scenarios in sustainable winemaking’, J. Clean. Prod., vol. 307, p. 127318, Jul. 2021, doi: 10.1016/j.jclepro.2021.127318. DOI: https://doi.org/10.1016/j.jclepro.2021.127318
  15. G. Mian, F. Nassivera, S. Sillani, and L. Iseppi, ‘Grapevine Resistant Cultivars: A Story Review and the Importance on the Related Wine Consumption Inclination’, Sustainability, vol. 15, no. 1, p. 390, Dec. 2022, doi: 10.3390/su15010390. DOI: https://doi.org/10.3390/su15010390
  16. L. Nesselhauf, R. Fleuchaus, and L. Theuvsen, ‘What about the environment?: A choice-based conjoint study about wine from fungus-resistant grape varieties’, Int. J. Wine Bus. Res., vol. 32, no. 1, pp. 96–121, Aug. 2019, doi: 10.1108/IJWBR-09-2018-0049. DOI: https://doi.org/10.1108/IJWBR-09-2018-0049
  17. M. Borrello, L. Cembalo, and R. Vecchio, ‘Role of information in consumers’ preferences for eco-sustainable genetic improvements in plant breeding’, PLOS ONE, vol. 16, no. 7, p. e0255130, Jul. 2021, doi: 10.1371/journal.pone.0255130. DOI: https://doi.org/10.1371/journal.pone.0255130
  18. R. Vecchio, E. Pomarici, E. Giampietri, and M. Borrello, ‘Consumer acceptance of fungus-resistant grape wines: Evidence from Italy, the UK, and the USA’, PLOS ONE, vol. 17, no. 4, p. e0267198, Apr. 2022, doi: 10.1371/journal.pone.0267198. DOI: https://doi.org/10.1371/journal.pone.0267198
  19. C. Kiefer and G. Szolnoki, ‘Consumer Acceptance of Fungus-Resistant Grape Varieties – An Exploratory Study Using Sensory Evaluation Test Among Consumers in Germany’, May 2023, doi: 10.20944/preprints202305.1733.v1. DOI: https://doi.org/10.20944/preprints202305.1733.v1
  20. EU Regulation 2117. 2021. Accessed: Jul. 25, 2024. [Online]. Available: https://eur-lex.europa.eu/eli/reg/2021/2117/oj
  21. S. Sillani, F. Marangon, G. Gallenti, S. Troiano, F. Nassivera, and M. Carzedda, ‘Designation and Certification Strategies for Fungus-Resistant Grape Wines: An Exploratory Study in Italy’, Sustainability, vol. 14, no. 22, p. 14871, Nov. 2022, doi: 10.3390/su142214871. DOI: https://doi.org/10.3390/su142214871
  22. R. Finger, L. Zachmann, and C. McCallum, ‘Short supply chains and the adoption of fungus‐resistant grapevine varieties’, Appl. Econ. Perspect. Policy, vol. 45, no. 3, pp. 1753–1775, Sep. 2023, doi: 10.1002/aepp.13337. DOI: https://doi.org/10.1002/aepp.13337
  23. L. Zachmann, C. McCallum, and R. Finger, ‘Determinants of the adoption of fungus-resistant grapevines: Evidence from Switzerland’, J. Wine Econ., pp. 1–33, Apr. 2024, doi: 10.1017/jwe.2023.36. DOI: https://doi.org/10.1017/jwe.2023.36
  24. O. Sambucci, J. M. Alston, K. B. Fuller, and J. Lusk, ‘The Pecuniary and Nonpecuniary Costs of Powdery Mildew and the Potential Value of Resistant Grape Varieties in California’, Am. J. Enol. Vitic., vol. 70, no. 2, pp. 177–187, Apr. 2019, doi: 10.5344/ajev.2018.18032. DOI: https://doi.org/10.5344/ajev.2018.18032
  25. L. Bartek, N. Sundin, I. Strid, M. Andersson, P.-A. Hansson, and M. Eriksson, ‘Environmental benefits of circular food systems: The case of upcycled protein recovered using genome edited potato’, J. Clean. Prod., vol. 380, p. 134887, Dec. 2022, doi: 10.1016/j.jclepro.2022.134887. DOI: https://doi.org/10.1016/j.jclepro.2022.134887
  26. S. Chatzopoulou and S. Chatzopoulos, ‘Livestock farmers’ perceptions towards genetically engineered methods and genetically modified organisms in Denmark and Sweden’, J. Rural Stud., vol. 111, p. 103414, Oct. 2024, doi: 10.1016/j.jrurstud.2024.103414. DOI: https://doi.org/10.1016/j.jrurstud.2024.103414
  27. M. A. Schnurr and B. Dowd-Uribe, ‘Anticipating farmer outcomes of three genetically modified staple crops in sub-Saharan Africa: Insights from farming systems research’, J. Rural Stud., vol. 88, pp. 377–387, Dec. 2021, doi: 10.1016/j.jrurstud.2021.08.001. DOI: https://doi.org/10.1016/j.jrurstud.2021.08.001
  28. L. Basinskiene and B. Seinauskiene, ‘Gene Editing Versus Gene Modification: Awareness, Attitudes and Behavioral Intentions of Lithuanian Consumers, Producers, and Farmers’, Chem. Eng. Trans., vol. 87, pp. 433–438, Jul. 2021, doi: 10.3303/CET2187073.
  29. A. Bearth, G. Kaptan, and S. H. Kessler, ‘Genome-edited versus genetically-modified tomatoes: an experiment on people’s perceptions and acceptance of food biotechnology in the UK and Switzerland’, Agric. Hum. Values, vol. 39, no. 3, pp. 1117–1131, Sep. 2022, doi: 10.1007/s10460-022-10311-8. DOI: https://doi.org/10.1007/s10460-022-10311-8
  30. S. Romeo Lironcurti, F. Demaria, R. D’Annolfo, and R. Sardone, ‘Consumer Evaluations of and Attitudes towards New Genome Editing Techniques: An Italian Case Study’, Agriculture, vol. 14, no. 1, Art. no. 1, Jan. 2024, doi: 10.3390/agriculture14010051. DOI: https://doi.org/10.3390/agriculture14010051
  31. S. Nawaz and T. Satterfield, ‘Climate solution or corporate co-optation? US and Canadian publics’ views on agricultural gene editing’, PLOS ONE, vol. 17, no. 3, p. e0265635, Mar. 2022, doi: 10.1371/journal.pone.0265635. DOI: https://doi.org/10.1371/journal.pone.0265635
  32. M. M. Andersen et al., ‘Feasibility of new breeding techniques for organic farming’, Trends Plant Sci., vol. 20, no. 7, pp. 426–434, Jul. 2015, doi: 10.1016/j.tplants.2015.04.011. DOI: https://doi.org/10.1016/j.tplants.2015.04.011
  33. M. Robbins, C. Calabrese, J. D. Featherstone, and G. A. Barnett, ‘Understanding knowledge and perceptions of genome editing technologies: a textual analysis of major agricultural stakeholder groups’, J. Sci. Commun., vol. 20, no. 5, p. A07, Sep. 2021, doi: 10.22323/2.20050207. DOI: https://doi.org/10.22323/2.20050207
  34. L. Ferrari, ‘Farmers’ attitude toward CRISPR/Cas9: The case of blast resistant rice’, Agribusiness, vol. 38, no. 1, pp. 175–194, 2022, doi: 10.1002/agr.21717. DOI: https://doi.org/10.1002/agr.21717
  35. OIV, ‘State of the world wine and wine sector in 2023’. 2024. Accessed: Jul. 25, 2024. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf
  36. V. Squires, ‘Thematic Analysis’, in Varieties of Qualitative Research Methods: Selected Contextual Perspectives, J. M. Okoko, S. Tunison, and K. D. Walker, Eds., Cham: Springer International Publishing, 2023, pp. 463–468. doi: 10.1007/978-3-031-04394-9_72. DOI: https://doi.org/10.1007/978-3-031-04394-9_72
  37. V. Braun and V. Clarke, ‘Using thematic analysis in psychology’, Qual. Res. Psychol., vol. 3, no. 2, pp. 77–101, Jan. 2006, doi: 10.1191/1478088706qp063oa. DOI: https://doi.org/10.1191/1478088706qp063oa
  38. E. Kovak, D. Blaustein-Rejto, and M. Qaim, ‘Genetically modified crops support climate change mitigation’, Trends Plant Sci., vol. 27, no. 7, pp. 627–629, Jul. 2022, doi: 10.1016/j.tplants.2022.01.004. DOI: https://doi.org/10.1016/j.tplants.2022.01.004
  39. K. Schneider et al., ‘Insights on cisgenic plants with durable disease resistance under the European Green Deal’, Trends Biotechnol., vol. 41, no. 8, pp. 1027–1040, Aug. 2023, doi: 10.1016/j.tibtech.2023.02.005. DOI: https://doi.org/10.1016/j.tibtech.2023.02.005