Butterhead lettuce growth under shallow water tables and its recovery on tropical urban ecosystem

Published 2025-03-10
Keywords
- Excess water stress,
- groundwater level,
- hypoxia stress,
- post-water stress,
- tropical green vegie
How to Cite
Copyright (c) 2024 Strayker Ali Muda, Benyamin Lakitan, Fitri Ramadhani, Juwinda

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Butterhead lettuce (Lactuca sativa var. capitata) is a nutrient-rich leafy vegetable beneficial for human health. Lettuce growth and yield performance hampered under water stress conditions. This study aimed to assess its growth and recovery under short-term shallow water conditions in the tropical urban ecosystem. A randomized block design was used with three water table treatments: 16.7 cm, 12.7 cm, and 9.7 cm from the substrate surface. The Results showed that butterhead lettuce is intolerant of excess water, with stunted growth at the 9.7 cm water level, by affecting leaf length, leaf width, leaf initiation, and canopy area. Substrate moisture also indicated excess water at this level. Optimal recovery was observed two weeks after water stress. Leaf length and leaf width were analyzed using zero-intercept linear regression and the results were reliable predictors of leaf area (y = 0.6076LLxLW; R² = 0.9694). In conclusion, butterhead lettuce is sensitive to excess water, as shown by morphological changes, and requires two weeks to recover after water stress.
References
- ABDOELLAH O.S., SUPARMAN Y., SAFITRI K.I., MUBARAK A.Z., MILANI M., SURYA L., 2023 - Between food fulfillment and income: Can urban agriculture contribute to both? - Geography Sust., 4(2): 127-137.
- BATEMAN A.M., ERICKSON T.E., MERRITT D.J., VENEKLAAS E.J., MUÑOZ-ROJAS M., 2019 - Water availability drives the effectiveness of inorganic amendments to increase plant growth and substrate quality. - Catena, 182: e104116.
- CASIERRA-POSADA F., PEÑA-OLMOS J.E., 2022 - Prolonged waterlogging reduces growth and yield in broccoli plants (Brassica oleracea var. italica). - Gesunde Pflanzen., 74(2): 249-257.
- EASLON H.M., BLOOM A.J., 2014 - Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area - Appl. Plant Sci., 2(7): e1400033.
- EBENSO B., OTU A., GIUSTI A., COUSIN P., ADETIMIRIN V., RAZAFINDRALAMBO H., EFFA E., GKISAKIS V., THIARE O., LEVAVASSEUR V., KOUHOUNDE S., ADEOTI K., RAHIM A., MOUNIR, M., 2022 - Nature-based one health approaches to urban agriculture can deliver food and nutrition security. - Frontiers Nutr., 9: e773746.
- ECCLES R., ZHANG H., HAMILTON D., 2019 - A review of the effects of climate change on riverine flooding in subtropical and tropical regions - J. Water Climate Change, 10(4): 687-707.
- GUO Y., CHEN J., KUANG L., WANG N., ZHANG G., JIANG L., WU D., 2020 - Effects of waterlogging stress on early seedling development and transcriptomic responses in Brassica napus. - Mol. Breeding., 40: 1-14.
- GUSTIAR F., LAKITAN B., BUDIANTA D., NEGARA Z.P., 2023 - Non-destructive model for estimating leaf area and growth of Cnidoscolus aconitifolius cultivated using different stem diameter of the semi hardwood cuttings. - AGRIVITA, J. Agric. Sci., 45(2): 188-198.
- HUD A., ŠAMEC D., SENKO H., PETEK M., BRKLJAČIĆ L., POLE L., LAZAREVIC B., RAJNOVIC I., UDIKOVIC-KOLIC N., MESIC A., PALIJAN G., SALOPEK-SONDI B., PETRIĆ I., 2023 - Response of white cabbage (Brassica oleracea var. capitata) to single and repeated short-term waterlogging. - Agronomy., 13(1): e200.
- JIA W., MA M., CHEN J., WU S., 2021 - Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. - Inter. J. Mol. Sci., 22(3): e1088.
- KHAN M.I.R., TRIVELLINI A., CHHILLAR H., CHOPRA P., FERRANTE A., KHAN N.A., ISMAIL A.M., 2020 - The significance and functions of ethylene in flooding stress tolerance in plants. - Envir. Exp. Bot., 179: e104188.
- KUMAR M.R., BAHADUR V., EKKA S.K., KUJUR R., 2022 - Growing of vegetables under water deficiency and water logging. - Pharma Innovation. J., 8: 1612-1615.
- LAKITAN B., SIAGA E., FADILAH L.N., NURSHANTI D.F., WIDURI L.I., GUSTIAR F., PUTRI H.H., 2023 - Accurate and non-destructive estimation of palmate compound leaf area in cassava (Manihot esculenta Crantz) based on morphological traits of its selected lobes. - J. Agric. Techn., 19(1): 129-144.
- LAKITAN B., SUSILAWATI S., WIJAYA A., RIA R.P., PUTRI H.H., 2022 - Non-destructive leaf area estimation in habanero chili (Capsicum chinense Jacq.). - Inter. J. Agric. Techn., 18(2): 633-650.
- LAL R., 2020 - Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. - Food Security, 12(4): 871-876.
- MEIHANA M., LAKITAN B., HARUN M.U., WIDURI L.I., KARTIKA K., SIAGA E., KRISWANTORO H., 2017 - Steady shallow water table did not decrease leaf expansion rate, specific leaf weight, and specific leaf water content in tomato plants. - Australian J. Crop Sci., 11(12): 1635-1641.
- MORENO ROBLERO M.D.J., PINEDA PINEDA J., COLINAS LEÓN M.T., SAHAGÚN CASTELLANOS J., 2020 - Oxygen in the root zone and its effect on plants. - Rev. Mexicana Ciencias Agríc., 11(4): 931-943.
- MUDA S.A., LAKITAN B., NURSHANTI D.F., GUSTIAR F., RIA R.P., RIZAR F.F., FADHILAH L.N., 2023 - Morphological model and visual characteristic of leaf, and fruit of citrus (Citrus sinensis). - AGRIUM: Jurnal Ilmu Pertanian, 26(2): 92-102.
- MURDAD R., MUHIDDIN M., OSMAN W. H., TAJIDIN N. E., HAIDA Z., AWANG A., JALLOH M.B., 2022 - Ensuring urban food security in Malaysia during the COVID-19 pandemic - Is urban farming the answer? A review. - Sustainability, 14(7): e4155.
- NAZARI M., MOSTAJERAN A., ZARINKAMAR F., 2019 - Strong effect of recovery period between hypoxia events on roots of chickpea (Cicer arietinum L.). - Rhizosphere, 11: e100163.
- NICHOLAS S.O., GROOT S., HARRÉ N., 2023 - Understanding urban agriculture in context: Environmental, social, and psychological benefits of agriculture in Singapore. - Local Environment, 28(11): 1446-1462.
- NURSHANTI D.F., LAKITAN B., HASMEDA M., FERLINAHAYATI F., NEGARA Z.P., SUSILAWATI S., BUDIANTA D., 2022 - Planting materials, shading effects, and non-destructive estimation of compound leaf area in konjac (Amorphophallus Muelleri). - Trends Sci., 19(9): 3973-3973.
- O’HARA S., TOUSSAINT E.C., 2021 - Food access in crisis: Food security and COVID-19. - Ecological Economics, 180: e106859.
- PÉREZ-ROMERO J.A., DUARTE B., BARCIA-PIEDRAS J.M., MATOS A.R., REDONDO-GÓMEZ S., CAÇADOR I., MATEOS-NARANJO E., 2019 - Investigating the physiological mechanisms underlying Salicornia ramosissima response to atmospheric CO2 enrichment under coexistence of prolonged soil flooding and saline excess. - Plant Physiol. Biochem., 135: 149-159.
- PRADHAN P., CALLAGHAN M., HU Y., DAHAL K., HUNECKE C., REUßWIG F., CAMPEN H.L., KROPP J.P., 2023 - A systematic review highlights that there are multiple benefits of urban agriculture besides food. - Global Food Security, 38: e100700.
- RIA R.P., LAKITAN B., SULAIMAN F., YAKUP Y., 2023 - Searching for suitable cultivation system of Swiss chard (subsp.(L.) WDJ Koch) in the tropical lowland. - J. Hort. Res., 31(1): 81-90.
- SHELDON K.S., 2019 - Climate change in the tropics: Ecological and evolutionary responses at low latitudes. - Annual Rev. Ecol, Evol., Systematics, 50: 303-333.
- SUSILAWATI., LAKITAN B., 2019 - Cultivation of common bean (‘Phaseolus vulgaris’ L.) subjected to shallow water table at riparian wetland in South Sumatra, Indonesia. - Australian J. Crop Sci., 13(1): 98-104.
- TAREQ M.Z., SARKER M.S.A., SARKER M.D.H., MONIRUZZAMAN M., HASIBUZZAMAN A.S.M., ISLAM S.N., 2020 - Waterlogging stress adversely affects growth and development of Tomato. - Asian J. Crop Sci., 2(1): 44-50.
- WICHERN F., ISLAM M.R., HEMKEMEYER M., WATSON C., JOERGENSEN R.G., 2020 - Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. - Frontiers Sustain. Food Syst., 4: e30.
- WIRAGUNA E., MALIK A.I., COLMER T.D., ERSKINE W., 2021 - Tolerance of four grain legume species to waterlogging, hypoxia and anoxia at germination and recovery. - AoB Plants, 13(4): plab052.
- XU C., CHEN L., CHEN S., CHU G., WANG D., ZHANG X., 2020 - Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. - Ann. Appl. Biol., 177(1): 61-73.
- YIN J., BAUERLE T.L., 2017 - A global analysis of plant recovery performance from water stress. - Oikos, 126(10): 1377-1388.
- YIN J., NIU L., LI Y., SONG X., OTTOSEN C.O., WU Z., JIANG F., ZHOU R., 2023 - The effects of waterlogging stress on plant morphology, leaf physiology and fruit yield in six tomato genotypes at anthesis stage. - Veg. Res., 3(1): 1-9.
- YUAN G.N., MARQUEZ G.P.B., DENG H., IU A., FABELLA M., SALONGA R.B., ASHARDIONO F., CARTAGENA J.A., 2022 - A review on urban agriculture: technology, socio-economy, and policy. - Heliyon, 8(11): e1183.
- ZHOU W., CHEN F., MENG Y., CHANDRASEKARAN U., LUO X., YANG W., SHU K., 2020 - Plant waterlogging/ flooding stress responses: From seed germination to maturation. - Plant Physiol. Biochem., 148: 228-236.