Vol. 14 No. 1 (2025)
Full Research Articles

Is there an Animal Food Kuznets Curve, and does it matter?

Vito Frontuto
Department of Economics and Statistics, Università degli Studi di Torino, Torino 10153, Italy
Tommaso Felici
Utrecht University School of Economics (U.S.E), Kriekenpitplein 21-22, 3584 EC Utrecht, The Netherlands
Vania Andreoli
School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
Marco Maria Bagliani
Department of Economics and Statistics, Università degli Studi di Torino, Torino 10153, Italy
Alessandro Corsi
Department of Economics and Statistics, Università degli Studi di Torino, Torino 10153, Italy

Published 2024-09-24

Keywords

  • Protein consumption,
  • Consumption drivers,
  • Environmental Kuznets Curve,
  • mixed effects model,
  • agri-environmental climate public goods,
  • panel data
  • ...More
    Less

How to Cite

Frontuto, V., Felici, T., Andreoli, V., Bagliani, M. M., & Corsi, A. (2024). Is there an Animal Food Kuznets Curve, and does it matter?. Bio-Based and Applied Economics, 14(1), 19–35. https://doi.org/10.36253/bae-16172

Abstract

Proteins from animal sources, including meat, and plant-based foods are essential for a healthy human diet. However, animal-based proteins have significantly higher environmental impacts (e.g., greenhouse gas emissions, deforestation, and water usage) and health risks (e.g., obesity, type 2 diabetes, kidney stones and cardiovascular diseases) compared to plant-based proteins. The consumption patterns of these proteins are strongly influenced by income levels. This study introduces the concept of an Animal Food Kuznets Curve by systematically analyzing the relationship between income and animal-based protein consumption. Utilizing a novel panel dataset spanning 28 years and covering 79 countries, we uncover an inverted U-shaped relationship between income and the consumption of animal-based and meat proteins. Our findings indicate that the turning points occur around 43,000-45,000 US$, corresponding to the 90th and 95th percentiles of the per capita income distribution in the sample. At these income levels, protein consumption is estimated at approximately 25 g/day for meat and 52 g/day for animal-based proteins, as compared to recommended total protein intake of 45-56 g/day. These insights highlight the critical need for targeted policy interventions, such as taxes, nudges, and informational campaigns to promote sustainable dietary choices across all income levels. Our study provides empirical evidence for the importance of integrating economic and environmental policies to enhance global food sustainability.

References

  1. Aiking, H., & de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology 105: 515-522. https://doi.org/10.1016/j.tifs.2018.07.008. DOI: https://doi.org/10.1016/j.tifs.2018.07.008
  2. Akpalu, W., & Okyere, M. A. (2022). Fish protein transition in a coastal developing country. Environmental and Resource Economics. https://doi.org/10.1007/s10640-022-00669-y. DOI: https://doi.org/10.1007/s10640-022-00669-y
  3. Andreoli, V., Bagliani, M., Corsi, A., & Frontuto, V. (2021). Drivers of protein consumption: A cross-country analysis. Sustainability 13(13): 7399. https://doi.org/10.3390/su13137399. DOI: https://doi.org/10.3390/su13137399
  4. Asoudeh, F., Talebi, S., Jayedi, A., Marx, W., Najafi, M. T., & Mohammadi, H. (2022). Associations of total protein or animal protein intake and animal protein sources with risk of kidney stones: A systematic review and dose-response meta-analysis. Advances in Nutrition 13(3): 821-832. https://doi.org/10.1093/advances/nmac013. DOI: https://doi.org/10.1093/advances/nmac013
  5. Association of Religion Data Archive (ARDA) (2022). Religious Demographics – National Profiles. https://www.thearda.com/search-the-arda?sr=0&m=150&searchterms=muslims&specData=0&specItem=InternationalData. Accessed December 16, 2022.
  6. Bazoche, P., Guinet, N., Poret, S., & Teyssier, S. (2023). Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices. Food Policy 116: 102426. DOI: https://doi.org/10.1016/j.foodpol.2023.102426
  7. Bonnet, C., Bouamra-Mechemache, Z., Réquillart, V., & Treich, N. (2020). Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy 97: 101847. https://doi.org/10.1016/j.foodpol.2020.101847. DOI: https://doi.org/10.1016/j.foodpol.2020.101847
  8. Canavari, M., & Coderoni, S. (2020). Consumer stated preferences for dairy products with carbon footprint labels in Italy. Agricultural and Food Economics 8(1): 1-16. https://link.springer.com/article/10.1186/s40100-019-0149-1. DOI: https://doi.org/10.1186/s40100-019-0149-1
  9. Cellura, M., Cusenza, M. A., Longo, S., Luu, L. Q., & Skurk, T. (2022). Life cycle environmental impacts and health effects of protein-rich food as meat alternatives: A review. Sustainability 14(2): 979. https://doi.org/10.3390/su14020979. DOI: https://doi.org/10.3390/su14020979
  10. Cole, J. R., & McCoskey, S. (2017). Does global meat consumption follow an environmental Kuznets curve? Sustainability: Science, Practice and Policy 9(2): 26-36. https://doi.org/10.1080/15487733.2013.11908112. DOI: https://doi.org/10.1080/15487733.2013.11908112
  11. Costantini, M., & Lupi, C. (2013). A simple panel-CADF test for unit roots. Oxford Bulletin of Economics and Statistics 75(2): 276-296. https://doi.org/10.1111/j.1468-0084.2012.00690.x. DOI: https://doi.org/10.1111/j.1468-0084.2012.00690.x
  12. Dagevos, H., & Voordouw, J. (2017). Sustainability and meat consumption: Is reduction realistic? Sustainability: Science, Practice and Policy 9(2): 60-69. https://doi.org/10.1080/15487733.2013.11908115. DOI: https://doi.org/10.1080/15487733.2013.11908115
  13. de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science 128(1-3): 1-11. https://doi.org/10.1016/j.livsci.2009.11.007. DOI: https://doi.org/10.1016/j.livsci.2009.11.007
  14. Drewnowski, A., & Poulain, J. P. (2018). What lies behind the transition from plant-based to animal protein? AMA Journal of Ethics 20(10): E987-993. https://doi.org/10.1001/amajethics.2018.987. DOI: https://doi.org/10.1001/amajethics.2018.987
  15. Duro, J. A., Lauk, C., Kastner, T., Erb, K.-H., & Haberl, H. (2020). Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Global Environmental Change 64: 102124. https://doi.org/10.1016/j.gloenvcha.2020.102124. DOI: https://doi.org/10.1016/j.gloenvcha.2020.102124
  16. Dyer, J. A., & Desjardins, R. L. (2022). The GHG protein ratio: An indicator whose time has come. Highlights of Sustainability 1(2): 105-112. https://doi.org/10.54175/hsustain1020008. DOI: https://doi.org/10.54175/hsustain1020008
  17. Eberhardt, M. (2012). Estimating panel time-series models with heterogeneous slopes. The Stata Journal 12(1): 61-71. https://doi.org/10.1177/1536867X1201200105. DOI: https://doi.org/10.1177/1536867X1201200105
  18. Edenbrandt, A. K., & Lagerkvist, C. J. (2021). Is food labelling effective in reducing climate impact by encouraging the substitution of protein sources? Food Policy 101: 102097. https://doi.org/10.1016/j.foodpol.2021.102097. DOI: https://doi.org/10.1016/j.foodpol.2021.102097
  19. Errickson, F., Kuruc, K., & McFadden, J. (2021). Animal-based foods have high social and climate costs. Nature Food 2(4): 274-281. https://doi.org/10.1038/s43016-021-00265-1. DOI: https://doi.org/10.1038/s43016-021-00265-1
  20. FAO (2009). The state of food and agriculture: livestock in the balance. Food and Agriculture Organization. Rome.
  21. FAO (2021). Food Balances Sheets. https://www.fao.org/faostat/en/#data/FBS. Food and Agriculture Organization. Rome. Accessed September 20, 2021.
  22. FAO (2022a). Crops and livestock products - area harvested. https://www.fao.org/faostat/en/#data/QCL. Food and Agriculture Organization. Rome. Accessed September 10, 2021.
  23. FAO (2022b). Consumer Price Indices. https://www.fao.org/faostat/en/#data/CP. Accessed March 15, 2022.
  24. Feenstra, R., Inklaar R. and Timmer M. P. (2015). The Next Generation of the Penn World Table. American Economic Review 105(10): 3150-3182. 10.1257/aer.20130954. Accessed December 16, 2022. DOI: https://doi.org/10.1257/aer.20130954
  25. Frank, J. (2008). Is there an “animal welfare Kuznets curve”? Ecological Economics 66(2-3): 478-491. https://doi.org/10.1016/j.ecolecon.2007.10.017. DOI: https://doi.org/10.1016/j.ecolecon.2007.10.017
  26. Funke, F., Mattauch, L., van den Bijgaart, I., Godfray, H. C. J., Hepburn, C., Klenert, D., Springmann, M., & Treich, N. (2022). Toward optimal meat pricing: Is it time to tax meat consumption? Review of Environmental Economics and Policy 16(2): 219-240. https://doi.org/10.1086/721078. DOI: https://doi.org/10.1086/721078
  27. Gaillac, R., & Marbach, S. (2021). The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production 321: 128766. https://doi.org/10.1016/j.jclepro.2021.128766. DOI: https://doi.org/10.1016/j.jclepro.2021.128766
  28. Galli, F. & Moretti, M. (2024). Narratives shaping the protein transition. Nature Food 5(1): 7-8. https://doi.org/10.1038/s43016-023-00914-7. DOI: https://doi.org/10.1038/s43016-023-00914-7
  29. Gerbens-Leenes, P. W., Nonhebel, S., & Krol, M. S. (2010). Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 55(3): 597-608. https://doi.org/10.1016/j.appet.2010.09.013. DOI: https://doi.org/10.1016/j.appet.2010.09.013
  30. Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science 361(243): eaam5324. https://doi.org/10.1126/science.aam5324. DOI: https://doi.org/10.1126/science.aam5324
  31. Gonzalez, N., Marques, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010-2020) evidences. Food Research International 137: 109341. https://doi.org/10.1016/j.foodres.2020.109341. DOI: https://doi.org/10.1016/j.foodres.2020.109341
  32. Grossman, G. M. (1995). Pollution and growth: What do we know? In Goldin, I. & Winters L. A. (Eds.), The economics of sustainable development (pp. 19-50). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511751905.003
  33. Grossman, G. M., & Krueger, A. (1991). Environmental impacts of a North American Free Trade Agreement. Working paper no. 3914. National Bureau of Economic Research, Cambridge, MA. https://doi.org/10.3386/w3914. DOI: https://doi.org/10.3386/w3914
  34. Hasanov, F. J., Hunt, L. C., & Mikayilov, J. I. (2021). Estimating different order polynomial logarithmic environmental Kuznets curves. Environmental Science and Pollution Research International 28: 41965 - 41987. https://doi.org//10.1007/s11356-021-13463-y. DOI: https://doi.org/10.1007/s11356-021-13463-y
  35. Hayek, M. N., Harwatt, H., Ripple, W. J., & Mueller, N. D. (2020). The carbon opportunity cost of animal-sourced food production on land. Nature Sustainability 4(1): 21-24. https://doi.org/10.1038/s41893-020-00603-4. DOI: https://doi.org/10.1038/s41893-020-00603-4
  36. Henchion, M., & Zimmermann, J. (2021). Animal food products: policy, market and social issues and their influence on demand and supply of meat. Proceedings of the Nutrition Society 80(2): 252-263. https://doi.org/10.1017/S0029665120007971. DOI: https://doi.org/10.1017/S0029665120007971
  37. Huang, Y., Cao, D., Chen, Z., Chen, B., Li, J., Guo, J., Dong, Q., Liu, L., & Wei, Q. (2021). Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chemistry 356: 129697. https://doi.org/10.1016/j.foodchem.2021.129697. DOI: https://doi.org/10.1016/j.foodchem.2021.129697
  38. Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences 110(21): 8399-8404. https://doi.org/10.1073/pnas.1208059110. DOI: https://doi.org/10.1073/pnas.1208059110
  39. Lakdawalla, D., & Philipson, T. (2009). The growth of obesity and technological change. Economics & Human Biology 7(3): 283-293. https://doi.org/10.1016/j.ehb.2009.08.001. DOI: https://doi.org/10.1016/j.ehb.2009.08.001
  40. Lakdawalla, D., Philipson, T., Bhattacharya, J. (2005). Welfare-enhancing technological change and the growth of obesity. American Economic Review 95(2): 283-293. https://doi.org/10.1257/000282805774670266. DOI: https://doi.org/10.1257/000282805774670266
  41. Lombardi, G. V., Berni, R., & Rocchi, B. (2017). Environmental friendly food. Choice experiment to assess consumer’s attitude toward “climate neutral” milk: the role of communication. Journal of Cleaner Production 142: 257-262. https://doi.org/10.1016/j.jclepro.2016.05.125. DOI: https://doi.org/10.1016/j.jclepro.2016.05.125
  42. Machovina, B., Feeley, K. J., & Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment 536: 419-431. https://doi.org/10.1016/j.scitotenv.2015.07.022. DOI: https://doi.org/10.1016/j.scitotenv.2015.07.022
  43. Malik, V. S., Li, Y., Tobias, D. K., Pan, A., & Hu, F. B. (2016). Dietary protein intake and risk of type 2 diabetes in US men and women. American Journal of Epidemiology 183(8): 715-728. https://doi.org/10.1093/aje/kwv268. DOI: https://doi.org/10.1093/aje/kwv268
  44. Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets - A review. Nutrients 11(11). https://doi.org/10.3390/nu11112661. DOI: https://doi.org/10.3390/nu11112661
  45. Marques, A. C., Fuinhas, J. A., & Pais, D. F. (2018). Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. Journal of Cleaner Production 196: 245-258. https://doi.org/10.1016/j.jclepro.2018.06.011. DOI: https://doi.org/10.1016/j.jclepro.2018.06.011
  46. Mathijs, E. (2015). Exploring future patterns of meat consumption. Meat Science 109: 112-116. https://doi.org/10.1016/j.meatsci.2015.05.007. DOI: https://doi.org/10.1016/j.meatsci.2015.05.007
  47. Mazac, R., Meinilä, J., Korkalo, L., Järviö, N., Jalava, M., & Tuomisto, H. L. (2022). Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nature Food 3(4): 286-293. https://doi.org/10.1038/s43016-022-00489-9. DOI: https://doi.org/10.1038/s43016-022-00489-9
  48. McClements, D. J., & Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Review in Food Science and Food Safety 20(4): 4049-4100. https://doi.org/10.1111/1541-4337.12771. DOI: https://doi.org/10.1111/1541-4337.12771
  49. Mekonnen, M. M., & Gerbens-Leenes, W. (2020). The water footprint of global food production. Water 12(10): 2696. https://doi.org/10.3390/w12102696. DOI: https://doi.org/10.3390/w12102696
  50. Milford, A. B., Le Mouel, C., Bodirsky, B. L., & Rolinski, S. (2019). Drivers of meat consumption. Appetite 141: 104313. https://doi.org/10.1016/j.appet.2019.06.005. DOI: https://doi.org/10.1016/j.appet.2019.06.005
  51. OECD and FAO (2023). OECD-FAO Agricultural Outlook 2023-2032. Paris, OECD. https://openknowledge.fao.org/handle/20.500.14283/cc6361en. DOI: https://doi.org/10.1787/08801ab7-en
  52. Pais, D. F., Marques, A. C., & Fuinhas, J. A. (2021). Drivers of a new dietary transition towards a sustainable and healthy future. Cleaner and Responsible Consumption 3: 100025. https://doi.org/10.1016/j.clrc.2021.100025. DOI: https://doi.org/10.1016/j.clrc.2021.100025
  53. Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics 61(S1): 653-670. https://doi.org/10.1111/1468-0084.0610s1653. DOI: https://doi.org/10.1111/1468-0084.61.s1.14
  54. Pedroni, P. (2004). Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory 20(3): 597-625. https://doi.org/10.1017/S0266466604203073. DOI: https://doi.org/10.1017/S0266466604203073
  55. Perman, R., & Stern, D. I. (2003). Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. Australian Journal of Agricultural and Resource Economics 47: 325-347. https://doi.org/10.1111/1467-8489.00216. DOI: https://doi.org/10.1111/1467-8489.00216
  56. Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical Economics 60(1): 13-50. https://doi.org/10.1007/s00181-020-01875-7. DOI: https://doi.org/10.1007/s00181-020-01875-7
  57. Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68(1): 79-113. https://doi.org/10.1016/0304-4076(94)01644-F. DOI: https://doi.org/10.1016/0304-4076(94)01644-F
  58. Poore, J., & Nemecek, T. (2018). Reducing food environmental impacts through producers and consumers. Science 360: 987-992. https://doi.org/10.1126/science.aaq0216. DOI: https://doi.org/10.1126/science.aaq0216
  59. Popkin, B. M. (1993). Nutritional patterns and transitions. Population and development review 19(1): 138-157. https://doi.org/10.2307/2938388. DOI: https://doi.org/10.2307/2938388
  60. Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata. 2nd edition. Biometrics 64: 1310-1310. https://doi.org/10.1111/j.1541-0420.2008.01138_15.x. DOI: https://doi.org/10.1111/j.1541-0420.2008.01138_15.x
  61. Sans, P., & Combris, P. (2015). World meat consumption patterns: An overview of the last fifty years (1961-2011). Meat Science 109: 106-111. https://doi.org/10.1016/j.meatsci.2015.05.012. DOI: https://doi.org/10.1016/j.meatsci.2015.05.012
  62. Saqib, M. & Benhmad, F. (2021). Updated meta-analysis of environmental Kuznets curve: Where do we stand? Environmental Impact Assessment Review 86: 106503. https://doi.org/10.1016/j.eiar.2020.106503. DOI: https://doi.org/10.1016/j.eiar.2020.106503
  63. Shepon, A., Eshel, G., Noor, E., & Milo, R. (2018). The opportunity cost of animal-based diets exceeds all food losses. Proceedings of the National Academy of Sciences 115(15): 3804-3809. https://doi.org/10.1073/pnas.1713820115. DOI: https://doi.org/10.1073/pnas.1713820115
  64. Simon, W. J., Hijbeek, R., Frehner, A., Cardinaals, R., Talsma, E. F., & Van Zanten, H. H. (2024). Circular food system approaches can support current European protein intake levels while reducing land use and greenhouse gas emissions. Nature Food 5(5): 402-412. https://doi.org/10.1038/s43016-024-00975-2. DOI: https://doi.org/10.1038/s43016-024-00975-2
  65. Springmann, M., Godfray, H. C., Rayner, M., & Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences 113(15): 4146-4151. https://doi.org/10.1073/pnas.1523119113. DOI: https://doi.org/10.1073/pnas.1523119113
  66. Stylianou, K. S., Fulgoni, V. L., & Jolliet, O. (2021). Small targeted dietary changes can yield substantial gains for human health and the environment. Nature Food 2(8): 616-627. https://doi.org/10.1038/s43016-021-00343-4. DOI: https://doi.org/10.1038/s43016-021-00343-4
  67. Sun, Y., Liu, B., Snetselaar, L. G., Wallace, R. B., Shadyab, A. H., Kroenke, C. H., Haring, B., Howard, B. V., Shikany, J. M., Valdiviezo, C., & Bao, W. (2021). Association of major dietary protein sources with all-cause and cause-specific mortality: Prospective cohort study. Journal of the American Heart Association 10(5): e015553. https://doi.org/10.1161/JAHA.119.015553. DOI: https://doi.org/10.1161/JAHA.119.015553
  68. Swain, M., Blomqvist, L., McNamara, J., & Ripple, W. J. (2018). Reducing the environmental impact of global diets. Science of the Total Environment 610-611: 1207-1209. https://doi.org/10.1016/j.scitotenv.2017.08.125. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.125
  69. Teal, F., & Eberhardt, M. (2010). Productivity analysis in global manufacturing production. Department of Economics Discussion Paper Series. University of Oxford.
  70. Thomson, L. R., & Rowntree, J. E. (2020). Invited Review: Methane sources, quantification, and mitigation in grazing beef systems. Applied animal science 36(4): 556-573. https://doi.org/10.15232/aas.2019-01951. DOI: https://doi.org/10.15232/aas.2019-01951
  71. Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature 515(7528): 518-522. https://doi.org/10.1038/nature13959. DOI: https://doi.org/10.1038/nature13959
  72. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences 112(18): 5649-5654. https://doi.org/10.1073/pnas.1503141112. DOI: https://doi.org/10.1073/pnas.1503141112
  73. Van Zanten, H. H. E., Herrero, M., Van Hal, O., Roos, E., Muller, A., Garnett, T., Gerber, P. J., Schader, C., & de Boer, I. J. M. (2018). Defining a land boundary for sustainable livestock consumption. Global Change Biology 24(9): 4185-4194. https://doi.org/10.1111/gcb.14321. DOI: https://doi.org/10.1111/gcb.14321
  74. Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environmental Science & Policy 39: 95-106. https://doi.org/10.1016/j.envsci.2014.02.009. DOI: https://doi.org/10.1016/j.envsci.2014.02.009
  75. Westerlund, J. (2005). New simple tests for panel cointegration. Econometric Reviews 24(3): 297-316. https://doi.org/10.1080/07474930500243019. DOI: https://doi.org/10.1080/07474930500243019
  76. Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., de Vries, W., Majele Sibanda, L., … Murray, C. J. L. (2019). Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet 393(10170): 447-492. https://doi.org/10.1016/s0140-6736(18)31788-4. DOI: https://doi.org/10.1016/S0140-6736(18)31788-4
  77. World Bank (2022a). Export and Import data. https://databank.worldbank.org/export-and-import-data/id/42cf7c81. Accessed December 16, 2022.
  78. World Bank (2022b). Educational attainment, at least completed post-secondary, population 25+, total (%) (cumulative). https://data.worldbank.org/indicator/SE.SEC.CUAT.PO.ZS. Accessed December 16, 2022.
  79. World Bank (2022c). Labor force participation rate, female (% of female population ages 15+) (modeled ILO estimate). https://data.worldbank.org/indicator/SL.TLF.CACT.FE.ZS. Accessed December 16, 2022.
  80. World Bank (2022d). Urban population (% of total population). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS. Accessed December 16, 2022.
  81. York, R., & Gossard, M. H. (2004). Cross-national meat and fish consumption: exploring the effects of modernization and ecological context. Ecological Economics 48(3): 293-302. https://doi.org/10.1016/j.ecolecon.2003.10.009. DOI: https://doi.org/10.1016/j.ecolecon.2003.10.009
  82. You, W., & Henneberg, M. (2016). Meat in modern diet, just as bad as sugar, correlates with worldwide Obesity: An ecological analysis. Journal of Nutrition & Food Sciences 6(4): 1000517. https://doi.org/10.4172/2155-9600.1000517. DOI: https://doi.org/10.4172/2155-9600.1000517
  83. Zhang, M., Feng, J. C., Sun, L., Li, P., Huang, Y., Zhang, S., & Yang, Z. (2022). Individual dietary structure changes promote greenhouse gas emission reduction. Journal of Cleaner Production 366: 132787. https://doi.org/10.1016/j.jclepro.2022.132787. DOI: https://doi.org/10.1016/j.jclepro.2022.132787
  84. Zheng, J., Zhu, T., Yang, G., Zhao, L., Li, F., Park, Y. M., Tabung, F. K., Steck, S. E., Li, X., & Wang, H. (2022). The isocaloric substitution of plant-based and animal-based protein in relation to aging-related health outcomes: A systematic review. Nutrients 14(2): 272. https://doi.org/10.3390/nu14020272. DOI: https://doi.org/10.3390/nu14020272