Published 2024-09-24
Keywords
- Protein consumption,
- Consumption drivers,
- Environmental Kuznets Curve,
- mixed effects model,
- agri-environmental climate public goods
- panel data ...More
How to Cite
Copyright (c) 2025 Vito Frontuto, Tommaso Felici, Vania Andreoli, Alessandro Corsi, Marco Maria Bagliani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Proteins from animal sources, including meat, and plant-based foods are essential for a healthy human diet. However, animal-based proteins have significantly higher environmental impacts (e.g., greenhouse gas emissions, deforestation, and water usage) and health risks (e.g., obesity, type 2 diabetes, kidney stones and cardiovascular diseases) compared to plant-based proteins. The consumption patterns of these proteins are strongly influenced by income levels. This study introduces the concept of an Animal Food Kuznets Curve by systematically analyzing the relationship between income and animal-based protein consumption. Utilizing a novel panel dataset spanning 28 years and covering 79 countries, we uncover an inverted U-shaped relationship between income and the consumption of animal-based and meat proteins. Our findings indicate that the turning points occur around 43,000-45,000 US$, corresponding to the 90th and 95th percentiles of the per capita income distribution in the sample. At these income levels, protein consumption is estimated at approximately 25 g/day for meat and 52 g/day for animal-based proteins, as compared to recommended total protein intake of 45-56 g/day. These insights highlight the critical need for targeted policy interventions, such as taxes, nudges, and informational campaigns to promote sustainable dietary choices across all income levels. Our study provides empirical evidence for the importance of integrating economic and environmental policies to enhance global food sustainability.
References
- Aiking, H., & de Boer, J. (2020). The next protein transition. Trends in Food Science & Technology 105: 515-522. https://doi.org/10.1016/j.tifs.2018.07.008.
- Akpalu, W., & Okyere, M. A. (2022). Fish protein transition in a coastal developing country. Environmental and Resource Economics. https://doi.org/10.1007/s10640-022-00669-y.
- Andreoli, V., Bagliani, M., Corsi, A., & Frontuto, V. (2021). Drivers of protein consumption: A cross-country analysis. Sustainability 13(13): 7399. https://doi.org/10.3390/su13137399.
- Asoudeh, F., Talebi, S., Jayedi, A., Marx, W., Najafi, M. T., & Mohammadi, H. (2022). Associations of total protein or animal protein intake and animal protein sources with risk of kidney stones: A systematic review and dose-response meta-analysis. Advances in Nutrition 13(3): 821-832. https://doi.org/10.1093/advances/nmac013.
- Association of Religion Data Archive (ARDA) (2022). Religious Demographics – National Profiles. https://www.thearda.com/search-the-arda?sr=0&m=150&searchterms=muslims&specData=0&specItem=InternationalData. Accessed December 16, 2022.
- Bazoche, P., Guinet, N., Poret, S., & Teyssier, S. (2023). Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices. Food Policy 116: 102426.
- Bonnet, C., Bouamra-Mechemache, Z., Réquillart, V., & Treich, N. (2020). Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare. Food Policy 97: 101847. https://doi.org/10.1016/j.foodpol.2020.101847.
- Canavari, M., & Coderoni, S. (2020). Consumer stated preferences for dairy products with carbon footprint labels in Italy. Agricultural and Food Economics 8(1): 1-16. https://link.springer.com/article/10.1186/s40100-019-0149-1.
- Cellura, M., Cusenza, M. A., Longo, S., Luu, L. Q., & Skurk, T. (2022). Life cycle environmental impacts and health effects of protein-rich food as meat alternatives: A review. Sustainability 14(2): 979. https://doi.org/10.3390/su14020979.
- Cole, J. R., & McCoskey, S. (2017). Does global meat consumption follow an environmental Kuznets curve? Sustainability: Science, Practice and Policy 9(2): 26-36. https://doi.org/10.1080/15487733.2013.11908112.
- Costantini, M., & Lupi, C. (2013). A simple panel-CADF test for unit roots. Oxford Bulletin of Economics and Statistics 75(2): 276-296. https://doi.org/10.1111/j.1468-0084.2012.00690.x.
- Dagevos, H., & Voordouw, J. (2017). Sustainability and meat consumption: Is reduction realistic? Sustainability: Science, Practice and Policy 9(2): 60-69. https://doi.org/10.1080/15487733.2013.11908115.
- de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science 128(1-3): 1-11. https://doi.org/10.1016/j.livsci.2009.11.007.
- Drewnowski, A., & Poulain, J. P. (2018). What lies behind the transition from plant-based to animal protein? AMA Journal of Ethics 20(10): E987-993. https://doi.org/10.1001/amajethics.2018.987.
- Duro, J. A., Lauk, C., Kastner, T., Erb, K.-H., & Haberl, H. (2020). Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Global Environmental Change 64: 102124. https://doi.org/10.1016/j.gloenvcha.2020.102124.
- Dyer, J. A., & Desjardins, R. L. (2022). The GHG protein ratio: An indicator whose time has come. Highlights of Sustainability 1(2): 105-112. https://doi.org/10.54175/hsustain1020008.
- Eberhardt, M. (2012). Estimating panel time-series models with heterogeneous slopes. The Stata Journal 12(1): 61-71. https://doi.org/10.1177/1536867X1201200105.
- Edenbrandt, A. K., & Lagerkvist, C. J. (2021). Is food labelling effective in reducing climate impact by encouraging the substitution of protein sources? Food Policy 101: 102097. https://doi.org/10.1016/j.foodpol.2021.102097.
- Errickson, F., Kuruc, K., & McFadden, J. (2021). Animal-based foods have high social and climate costs. Nature Food 2(4): 274-281. https://doi.org/10.1038/s43016-021-00265-1.
- FAO (2009). The state of food and agriculture: livestock in the balance. Food and Agriculture Organization. Rome.
- FAO (2021). Food Balances Sheets. https://www.fao.org/faostat/en/#data/FBS. Food and Agriculture Organization. Rome. Accessed September 20, 2021.
- FAO (2022a). Crops and livestock products - area harvested. https://www.fao.org/faostat/en/#data/QCL. Food and Agriculture Organization. Rome. Accessed September 10, 2021.
- FAO (2022b). Consumer Price Indices. https://www.fao.org/faostat/en/#data/CP. Accessed March 15, 2022.
- Feenstra, R., Inklaar R. and Timmer M. P. (2015). The Next Generation of the Penn World Table. American Economic Review 105(10): 3150-3182. 10.1257/aer.20130954. Accessed December 16, 2022.
- Frank, J. (2008). Is there an “animal welfare Kuznets curve”? Ecological Economics 66(2-3): 478-491. https://doi.org/10.1016/j.ecolecon.2007.10.017.
- Funke, F., Mattauch, L., van den Bijgaart, I., Godfray, H. C. J., Hepburn, C., Klenert, D., Springmann, M., & Treich, N. (2022). Toward optimal meat pricing: Is it time to tax meat consumption? Review of Environmental Economics and Policy 16(2): 219-240. https://doi.org/10.1086/721078.
- Gaillac, R., & Marbach, S. (2021). The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. Journal of Cleaner Production 321: 128766. https://doi.org/10.1016/j.jclepro.2021.128766.
- Galli, F. & Moretti, M. (2024). Narratives shaping the protein transition. Nature Food 5(1): 7-8. https://doi.org/10.1038/s43016-023-00914-7.
- Gerbens-Leenes, P. W., Nonhebel, S., & Krol, M. S. (2010). Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 55(3): 597-608. https://doi.org/10.1016/j.appet.2010.09.013.
- Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science 361(243): eaam5324. https://doi.org/10.1126/science.aam5324.
- Gonzalez, N., Marques, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010-2020) evidences. Food Research International 137: 109341. https://doi.org/10.1016/j.foodres.2020.109341.
- Grossman, G. M. (1995). Pollution and growth: What do we know? In Goldin, I. & Winters L. A. (Eds.), The economics of sustainable development (pp. 19-50). Cambridge University Press.
- Grossman, G. M., & Krueger, A. (1991). Environmental impacts of a North American Free Trade Agreement. Working paper no. 3914. National Bureau of Economic Research, Cambridge, MA. https://doi.org/10.3386/w3914.
- Hasanov, F. J., Hunt, L. C., & Mikayilov, J. I. (2021). Estimating different order polynomial logarithmic environmental Kuznets curves. Environmental Science and Pollution Research International 28: 41965 - 41987. https://doi.org//10.1007/s11356-021-13463-y.
- Hayek, M. N., Harwatt, H., Ripple, W. J., & Mueller, N. D. (2020). The carbon opportunity cost of animal-sourced food production on land. Nature Sustainability 4(1): 21-24. https://doi.org/10.1038/s41893-020-00603-4.
- Henchion, M., & Zimmermann, J. (2021). Animal food products: policy, market and social issues and their influence on demand and supply of meat. Proceedings of the Nutrition Society 80(2): 252-263. https://doi.org/10.1017/S0029665120007971.
- Huang, Y., Cao, D., Chen, Z., Chen, B., Li, J., Guo, J., Dong, Q., Liu, L., & Wei, Q. (2021). Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chemistry 356: 129697. https://doi.org/10.1016/j.foodchem.2021.129697.
- Jones, B. A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M. Y., McKeever, D., Mutua, F., Young, J., McDermott, J., & Pfeiffer, D. U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences 110(21): 8399-8404. https://doi.org/10.1073/pnas.1208059110.
- Lakdawalla, D., & Philipson, T. (2009). The growth of obesity and technological change. Economics & Human Biology 7(3): 283-293. https://doi.org/10.1016/j.ehb.2009.08.001.
- Lakdawalla, D., Philipson, T., Bhattacharya, J. (2005). Welfare-enhancing technological change and the growth of obesity. American Economic Review 95(2): 283-293. https://doi.org/10.1257/000282805774670266.
- Lombardi, G. V., Berni, R., & Rocchi, B. (2017). Environmental friendly food. Choice experiment to assess consumer’s attitude toward “climate neutral” milk: the role of communication. Journal of Cleaner Production 142: 257-262. https://doi.org/10.1016/j.jclepro.2016.05.125.
- Machovina, B., Feeley, K. J., & Ripple, W. J. (2015). Biodiversity conservation: The key is reducing meat consumption. Science of the Total Environment 536: 419-431. https://doi.org/10.1016/j.scitotenv.2015.07.022.
- Malik, V. S., Li, Y., Tobias, D. K., Pan, A., & Hu, F. B. (2016). Dietary protein intake and risk of type 2 diabetes in US men and women. American Journal of Epidemiology 183(8): 715-728. https://doi.org/10.1093/aje/kwv268.
- Mariotti, F., & Gardner, C. D. (2019). Dietary protein and amino acids in vegetarian diets - A review. Nutrients 11(11). https://doi.org/10.3390/nu11112661.
- Marques, A. C., Fuinhas, J. A., & Pais, D. F. (2018). Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. Journal of Cleaner Production 196: 245-258. https://doi.org/10.1016/j.jclepro.2018.06.011.
- Mathijs, E. (2015). Exploring future patterns of meat consumption. Meat Science 109: 112-116. https://doi.org/10.1016/j.meatsci.2015.05.007.
- Mazac, R., Meinilä, J., Korkalo, L., Järviö, N., Jalava, M., & Tuomisto, H. L. (2022). Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nature Food 3(4): 286-293. https://doi.org/10.1038/s43016-022-00489-9.
- McClements, D. J., & Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive Review in Food Science and Food Safety 20(4): 4049-4100. https://doi.org/10.1111/1541-4337.12771.
- Mekonnen, M. M., & Gerbens-Leenes, W. (2020). The water footprint of global food production. Water 12(10): 2696. https://doi.org/10.3390/w12102696.
- Milford, A. B., Le Mouel, C., Bodirsky, B. L., & Rolinski, S. (2019). Drivers of meat consumption. Appetite 141: 104313. https://doi.org/10.1016/j.appet.2019.06.005.
- OECD and FAO (2023). OECD-FAO Agricultural Outlook 2023-2032. Paris, OECD. https://openknowledge.fao.org/handle/20.500.14283/cc6361en.
- Pais, D. F., Marques, A. C., & Fuinhas, J. A. (2021). Drivers of a new dietary transition towards a sustainable and healthy future. Cleaner and Responsible Consumption 3: 100025. https://doi.org/10.1016/j.clrc.2021.100025.
- Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and Statistics 61(S1): 653-670. https://doi.org/10.1111/1468-0084.0610s1653.
- Pedroni, P. (2004). Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econometric Theory 20(3): 597-625. https://doi.org/10.1017/S0266466604203073.
- Perman, R., & Stern, D. I. (2003). Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. Australian Journal of Agricultural and Resource Economics 47: 325-347. https://doi.org/10.1111/1467-8489.00216.
- Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical Economics 60(1): 13-50. https://doi.org/10.1007/s00181-020-01875-7.
- Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68(1): 79-113. https://doi.org/10.1016/0304-4076(94)01644-F.
- Poore, J., & Nemecek, T. (2018). Reducing food environmental impacts through producers and consumers. Science 360: 987-992. https://doi.org/10.1126/science.aaq0216.
- Popkin, B. M. (1993). Nutritional patterns and transitions. Population and development review 19(1): 138-157. https://doi.org/10.2307/2938388.
- Rabe-Hesketh, S., & Skrondal, A. (2008). Multilevel and longitudinal modeling using Stata. 2nd edition. Biometrics 64: 1310-1310. https://doi.org/10.1111/j.1541-0420.2008.01138_15.x.
- Sans, P., & Combris, P. (2015). World meat consumption patterns: An overview of the last fifty years (1961-2011). Meat Science 109: 106-111. https://doi.org/10.1016/j.meatsci.2015.05.012.
- Saqib, M. & Benhmad, F. (2021). Updated meta-analysis of environmental Kuznets curve: Where do we stand? Environmental Impact Assessment Review 86: 106503. https://doi.org/10.1016/j.eiar.2020.106503.
- Shepon, A., Eshel, G., Noor, E., & Milo, R. (2018). The opportunity cost of animal-based diets exceeds all food losses. Proceedings of the National Academy of Sciences 115(15): 3804-3809. https://doi.org/10.1073/pnas.1713820115.
- Simon, W. J., Hijbeek, R., Frehner, A., Cardinaals, R., Talsma, E. F., & Van Zanten, H. H. (2024). Circular food system approaches can support current European protein intake levels while reducing land use and greenhouse gas emissions. Nature Food 5(5): 402-412. https://doi.org/10.1038/s43016-024-00975-2.
- Springmann, M., Godfray, H. C., Rayner, M., & Scarborough, P. (2016). Analysis and valuation of the health and climate change cobenefits of dietary change. Proceedings of the National Academy of Sciences 113(15): 4146-4151. https://doi.org/10.1073/pnas.1523119113.
- Stylianou, K. S., Fulgoni, V. L., & Jolliet, O. (2021). Small targeted dietary changes can yield substantial gains for human health and the environment. Nature Food 2(8): 616-627. https://doi.org/10.1038/s43016-021-00343-4.
- Sun, Y., Liu, B., Snetselaar, L. G., Wallace, R. B., Shadyab, A. H., Kroenke, C. H., Haring, B., Howard, B. V., Shikany, J. M., Valdiviezo, C., & Bao, W. (2021). Association of major dietary protein sources with all-cause and cause-specific mortality: Prospective cohort study. Journal of the American Heart Association 10(5): e015553. https://doi.org/10.1161/JAHA.119.015553.
- Swain, M., Blomqvist, L., McNamara, J., & Ripple, W. J. (2018). Reducing the environmental impact of global diets. Science of the Total Environment 610-611: 1207-1209. https://doi.org/10.1016/j.scitotenv.2017.08.125.
- Teal, F., & Eberhardt, M. (2010). Productivity analysis in global manufacturing production. Department of Economics Discussion Paper Series. University of Oxford.
- Thomson, L. R., & Rowntree, J. E. (2020). Invited Review: Methane sources, quantification, and mitigation in grazing beef systems. Applied animal science 36(4): 556-573. https://doi.org/10.15232/aas.2019-01951.
- Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature 515(7528): 518-522. https://doi.org/10.1038/nature13959.
- Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences 112(18): 5649-5654. https://doi.org/10.1073/pnas.1503141112.
- Van Zanten, H. H. E., Herrero, M., Van Hal, O., Roos, E., Muller, A., Garnett, T., Gerber, P. J., Schader, C., & de Boer, I. J. M. (2018). Defining a land boundary for sustainable livestock consumption. Global Change Biology 24(9): 4185-4194. https://doi.org/10.1111/gcb.14321.
- Vranken, L., Avermaete, T., Petalios, D., & Mathijs, E. (2014). Curbing global meat consumption: Emerging evidence of a second nutrition transition. Environmental Science & Policy 39: 95-106. https://doi.org/10.1016/j.envsci.2014.02.009.
- Westerlund, J. (2005). New simple tests for panel cointegration. Econometric Reviews 24(3): 297-316. https://doi.org/10.1080/07474930500243019.
- Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., de Vries, W., Majele Sibanda, L., … Murray, C. J. L. (2019). Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet 393(10170): 447-492. https://doi.org/10.1016/s0140-6736(18)31788-4.
- World Bank (2022a). Export and Import data. https://databank.worldbank.org/export-and-import-data/id/42cf7c81. Accessed December 16, 2022.
- World Bank (2022b). Educational attainment, at least completed post-secondary, population 25+, total (%) (cumulative). https://data.worldbank.org/indicator/SE.SEC.CUAT.PO.ZS. Accessed December 16, 2022.
- World Bank (2022c). Labor force participation rate, female (% of female population ages 15+) (modeled ILO estimate). https://data.worldbank.org/indicator/SL.TLF.CACT.FE.ZS. Accessed December 16, 2022.
- World Bank (2022d). Urban population (% of total population). https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS. Accessed December 16, 2022.
- York, R., & Gossard, M. H. (2004). Cross-national meat and fish consumption: exploring the effects of modernization and ecological context. Ecological Economics 48(3): 293-302. https://doi.org/10.1016/j.ecolecon.2003.10.009.
- You, W., & Henneberg, M. (2016). Meat in modern diet, just as bad as sugar, correlates with worldwide Obesity: An ecological analysis. Journal of Nutrition & Food Sciences 6(4): 1000517. https://doi.org/10.4172/2155-9600.1000517.
- Zhang, M., Feng, J. C., Sun, L., Li, P., Huang, Y., Zhang, S., & Yang, Z. (2022). Individual dietary structure changes promote greenhouse gas emission reduction. Journal of Cleaner Production 366: 132787. https://doi.org/10.1016/j.jclepro.2022.132787.
- Zheng, J., Zhu, T., Yang, G., Zhao, L., Li, F., Park, Y. M., Tabung, F. K., Steck, S. E., Li, X., & Wang, H. (2022). The isocaloric substitution of plant-based and animal-based protein in relation to aging-related health outcomes: A systematic review. Nutrients 14(2): 272. https://doi.org/10.3390/nu14020272.