Towards digital farming: exploring technological integration in agricultural practices of a sample of italian livestock farms
Published 2025-06-03
Keywords
- Digital agriculture,
- Livestock farming,
- technology adoption
How to Cite
Copyright (c) 2025 Ogochukwu Felicitas Okoye, Selene Righi, Colomba Sermoneta , Gianluca Brunori, Michele Moretti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Despite the rapid rise of digital technologies in agriculture, their application remains more prominent in crop farming than in the livestock sector. Recognizing this gap, our study explores the current state and determinants of digital technology adoption across Italian livestock farms, examining key factors and broader trends in the industry. Using national agricultural census, and national statistical programme data, we applied a logistic regression model to assess the likelihood of adoption of technology. Findings reveal that large ruminant farms, particularly dairy cattle and buffalo, are more likely to integrate digital tools like decision support systems, cloud services, and monitoring devices. In contrast, meat cattle, small ruminants, and pig farms lag. Key determinants include broadband connectivity, ownership structure, education, and age, with additional factors influencing specific technology categories. Our results establish a foundation for future policy and investment, underscoring the need to build digital infrastructure and promote an inclusive model.
References
- Abeni, F., Petrera, F., & Galli, A. (2019). A Survey of Italian Dairy Farmers’ Propensity for Precision Livestock Farming Tools. Animals, 9(5), 202. https://doi.org/10.3390/ani9050202
- Alanezi, M. A., Shahriar, M. S., Hasan, M. B., Ahmed, S., Yusuf, A., & Bouchekara, H. R. (2022). Livestock management with unmanned aerial vehicles: A review. IEEE Access, 10, 45001–45028.
- Alipio, M., & Villena, M. L. (2023). Intelligent wearable devices and biosensors for monitoring cattle health conditions: A review and classification. Smart Health. Scopus. https://doi.org/10.1016/j.smhl.2022.100369
- Alonso, R. S., Sittón-Candanedo, I., García, Ó., Prieto, J., & Rodríguez-González, S. (2020a). An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks. Scopus. https://doi.org/10.1016/j.adhoc.2019.102047
- Alonso, R. S., Sittón-Candanedo, I., García, Ó., Prieto, J., & Rodríguez-González, S. (2020b). An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks, 98, 102047. https://doi.org/10.1016/j.adhoc.2019.102047
- Alshehri, D. M. (2023). Blockchain-assisted internet of things framework in smart livestock farming. Internet of Things (Netherlands). Scopus. https://doi.org/10.1016/j.iot.2023.100739
- Altamore, L., Chinnici, P., Bacarella, S., Chironi, S., & Ingrassia, M. (2024). Current Framework of Italian Agriculture and Changes between the 2010 and 2020 Censuses. Agriculture, 14(9), 1603.
- An, I. (2024). Meeting the European Union’s digital agriculture requirements.
- Baker, D., Jackson, E. L., & Cook, S. (2022). Perspectives of digital agriculture in diverse types of livestock supply chain systems. Making sense of uses and benefits. Frontiers in Veterinary Science. Scopus. https://doi.org/10.3389/fvets.2022.992882
- Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, P., Tscharke, M., & Berckmans, D. (2012). Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering. Scopus. https://doi.org/10.3965/j.ijabe.20120503.00?
- Barnes, A. P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., Van Der Wal, T., & Gómez-Barbero, M. (2019). Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80, 163–174. https://doi.org/10.1016/j.landusepol.2018.10.004
- Barrett, H., & Rose, D. C. (2022). Perceptions of the Fourth Agricultural Revolution: What’s In, What’s Out, and What Consequences are Anticipated? Sociologia Ruralis, 62(2), 162–189. https://doi.org/10.1111/soru.12324
- Birke, F. M., Bae, S., Schober, A., Wolf, S., Gerster-Bentaya, M., & Knierim, A. (2022). AKIS in European countries: Cross analysis of AKIS country.
- Bucci, G., Bentivoglio, D., Finco, A., & Belletti, M. (2019). Exploring the impact of innovation adoption in agriculture: How and where Precision Agriculture Technologies can be suitable for the Italian farm system? 275(1), 012004.
- Buller, H., Blokhuis, H., Lokhorst, K., Silberberg, M., & Veissier, I. (2020). Animal welfare management in a digital world. Animals. https://doi.org/10.3390/ani10101779
- Calcante, A., Tangorra, F. M., Marchesi, G., & Lazzari, M. (2014). A GPS/GSM based birth alarm system for grazing cows. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2013.11.006
- Chavan, M., Dhage, S., Gaikwad, U., Deokar, D., Lokhande, A., & Kamble, D. (2024). Digital livestock farming: A review. International Journal of Advanced Biochemistry Research, 8(4S), 469–478. https://doi.org/10.33545/26174693.2024.v8.i4sf.1027
- Chen, X., Ou, X., Dong, X., Yang, H., Ubaldo, C., & Yue, X.-G. (2021). Impact of farmer organization forms on agricultural product quality from the perspective of technology adoption. 92–99.
- Cox, S. (2002). Information technology: The global key to precision agriculture and sustainability. Computers and Electronics in Agriculture, 36(2–3), 93–111. https://doi.org/10.1016/s0168-1699(02)00095-9
- Cui, L., & Wang, W. (2023). Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review. Sustainability, 15(20), 14824.
- D’Agaro, E., Rosa, F., & Akentieva, N. P. (2021). New Technology Tools and Life Cycle Analysis (LCA) Applied to a Sustainable Livestock Production. Eurobiotech Journal. Scopus. https://doi.org/10.2478/ebtj-2021-0022
- Eastwood, C. R., Edwards, J. P., & Turner, J. A. (2021). Review: Anticipating alternative trajectories for responsible Agriculture 4.0 innovation in livestock systems. Animal. Scopus. https://doi.org/10.1016/j.animal.2021.100296
- Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of Things Journal, 5(5), 3758–3773.
- Finger, R. (2023). Digital innovations for sustainable and resilient agricultural systems. European Review of Agricultural Economics, 50(4), 1277–1309.
- Fuentes, S., Gonzalez Viejo, C., Tongson, E., & Dunshea, F. R. (2022). The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence. Animal Health Research Reviews, 23(1), 59–71. https://doi.org/10.1017/S1466252321000177
- Gabriel, A., & Gandorfer, M. (2023). Adoption of digital technologies in agriculture—An inventory in a European small-scale farming region. Precision Agriculture. Scopus. https://doi.org/10.1007/s11119-022-09931-1
- Goodwin, B. K., Rivieccio, G., De Luca, G., & Capitanio, F. (2024). Computing impulse response functions from a copula-based vector autoregressive model: Evidence from the italian agri-food value chain. Quality & Quantity, 58(2), 1779–1797. https://doi.org/10.1007/s11135-023-01720-w
- Grivins, M., & Kilis, E. (2023). Engaging with barriers hampering uptake of digital tools. Italian Review of Agricultural Economics, 78(2), 29–38.
- Groher, T., Heitkämper, K., & Umstätter, C. (2020). Digital technology adoption in livestock production with a special focus on ruminant farming. Animal, 14(11), 2404–2413. https://doi.org/10.1017/S1751731120001391
- Guntoro, B., Hoang, Q. N., & A’Yun, A. Q. (2019). Dynamic Responses of Livestock Farmers to Smart Farming. IOP Conference Series: Earth and Environmental Science. Scopus. https://doi.org/10.1088/1755-1315/372/1/012042
- Hackfort, S. (2021). Patterns of inequalities in digital agriculture: A systematic literature review. Sustainability (Switzerland). https://doi.org/10.3390/su132212345
- Kraft, M., Bernhardt, H., Brunsch, R., Büscher, W., Colangelo, E., Graf, H., Marquering, J., Tapken, H., Toppel, K., Westerkamp, C., & Ziron, M. (2022). Can Livestock Farming Benefit from Industry 4.0 Technology? Evidence from Recent Study. Applied Sciences (Switzerland). Scopus. https://doi.org/10.3390/app122412844
- MacPherson, J., Voglhuber-Slavinsky, A., Olbrisch, M., Schöbel, P., Dönitz, E., Mouratiadou, I., & Helming, K. (2022). Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agronomy for Sustainable Development, 42(4), 70.
- Marino, R., Petrera, F., & Abeni, F. (2023). Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. Animals, 13(14), 2280. https://doi.org/10.3390/ani13142280.
- Michels, M., Fecke, W., Feil, J.-H., Musshoff, O., Pigisch, J., & Krone, S. (2020). Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precision Agriculture, 21(2), 403–425. https://doi.org/10.1007/s11119-019-09675-5
- Morrone, S., Dimauro, C., Gambella, F., & Cappai, M. G. (2022). Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors, 22(12), 4319. https://doi.org/10.3390/s22124319
- Neethirajan, S., & Kemp, B. (2021). Digital Livestock Farming. Sensing and Bio-Sensing Research. Scopus. https://doi.org/10.1016/j.sbsr.2021.100408
- Pulina, G., Francesconi, A. H. D., Stefanon, B., Sevi, A., Calamari, L., Lacetera, N., Dell’Orto, V., Pilla, F., Ajmone Marsan, P., Mele, M., Rossi, F., Bertoni, G., Crovetto, G. M., & Ronchi, B. (2017). Sustainable ruminant production to help feed the planet. Italian Journal of Animal Science, 16(1), 140–171. https://doi.org/10.1080/1828051x.2016.1260500
- Righi, S., Viganò, E., & Panzone, L. (2023). Consumer concerns over food insecurity drive reduction in the carbon footprint of food consumption. Sustainable Production and Consumption, 39, 451–465. https://doi.org/10.1016/j.spc.2023.05.027
- Sozzi, M., Kayad, A., Ferrari, G., Zanchin, A., Grigolato, S., & Marinello, F. (2021). Connectivity in rural areas: A case study on internet connection in the Italian agricultural areas. 466–470.
- Subach, T. I., & Shmeleva, Z. N. (2022). Introduction of digital innovations in livestock farming. IOP Conference Series: Earth and Environmental Science, 1112(1), 012079. https://doi.org/10.1088/1755-1315/1112/1/012079
- Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6.
- Thomann, B., Würbel, H., Kuntzer, T., Umstätter, C., Wechsler, B., Meylan, M., & Schüpbach-Regula, G. (2023). Development of a data-driven method for assessing health and welfare in the most common livestock species in Switzerland: The Smart Animal Health project. Frontiers in Veterinary Science, 10, 1125806. https://doi.org/10.3389/fvets.2023.1125806.
- Trapanese, L., Petrocchi Jasinski, F., Bifulco, G., Pasquino, N., Bernabucci, U., & Salzano, A. (2024). Buffalo welfare: A literature review from 1992 to 2023 with a text mining and topic analysis approach. Italian Journal of Animal Science, 23(1), 570–584. https://doi.org/10.1080/1828051X.2024.2333813
- FAO. (2022), The State of Food and Agriculture 2022, FAO. https://doi.org/10.4060/cb9479en
- Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328.
- Tuyttens, F. A. M., Molento, C. F. M., & Benaissa, S. (2022). Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Frontiers in Veterinary Science. Scopus. https://doi.org/10.3389/fvets.2022.889623
- Vaintrub, M. O., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., & Vignola, G. (2021). Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal, 15(3), 100143.
- Vecchio, Y., De Rosa, M., Adinolfi, F., Bartoli, L., & Masi, M. (2020). Adoption of precision farming tools: A context-related analysis. Land Use Policy. Scopus. https://doi.org/10.1016/j.landusepol.2020.104481
- Weber, R., Braun, J., & Frank, M. (2022). How does the Adoption of Digital Technologies Affect the Social Sustainability of Small-scale Agriculture in South-West Germany? International Journal on Food System Dynamics. Scopus. https://doi.org/10.18461/ijfsd.v13i3.C3
- Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
- Zhou, Y., Tiemuer, W., & Zhou, L. (2022). Bibliometric analysis of smart livestock from 1998-2022. Procedia Computer Science, 214, 1428–1435. https://doi.org/10.1016/j.procs.2022.11.327
