Vol. 85 (2024)
Original Articles - Appraisal and rural economics

Urban green infrastructure valuation: an economic method for the aesthetic appraisal of hedges

Andrea Dominici
Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Italy
Sandro Sacchelli
Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy

Published 2025-02-14

Keywords

  • Hedges,
  • Parametric technique,
  • Economic analysis,
  • cultural ecosystem services,
  • Urban forest,
  • Florence (Italy)
  • ...More
    Less

Abstract

The paper presents a parametric approach to quantify the economic value of hedges in urban green spaces. The model integrates indexes that allow for an aesthetic estimate of green infrastructure. Both field and desk phases are developed to depict and sample hedgerows in a case study in Italy (Cascine Park, Florence). Street view and Google Maps applications are used in the preliminary steps to spatialize hedges. An equation, incorporating nine variables including financial, dendrometric, and correction factors, is developed to appraise economic value. The results highlight the relevance of species, plant height, and the number of hedge rows for the unitary and total value of green infrastructures. Phytosanitary condition, the presence of gaps in linear traits, and the degree of tree canopy coverage also influence the economic performances of hedges. The technique facilitates application for both researchers and practitioners, potentially allowing for damage estimates and calibrated management of urban green in different locations.

References

  1. Aboufazeli, S., Jahani, A., & Farahpour, M. (2022). Aesthetic quality modeling of the form of natural elements in the environment of urban parks. Evolutionary Intelligence, 17, 1–12. DOI: https://doi.org/10.1007/s12065-022-00768-1
  2. Amorim, J. H., Engardt, M., Johansson, C., Ribeiro, I., & Sannebro, M. (2021). Regulating and cultural ecosystem services of urban green infrastructure in the nordic countries: A systematic review. International Journal of Environmental Research and Public Health, 18(3), 1219. DOI: https://doi.org/10.3390/ijerph18031219
  3. Asociacion Espanola de Parques y Jardines Publicos (1999). Metedo Para Valoración de Árboles y Arbustos Ornamentales. Madrid, Spain, Norma Granada.
  4. Badano, D., Caracciolo, D., Mariotti, M., & Raineri, V. (2019). Destruction of a protected habitat by an invasive alien species: the case of Cydalima perspectalis (Walker, 1859) in the box tree formations of Liguria (north-west Italy) (lepidoptera: Crambidae). SHILAP Revista de Lepidopterologia, 47(185), 87–95. DOI: https://doi.org/10.57065/shilap.733
  5. Bella, S. (2013). The box tree moth Cydalima perspectalis (Walker, 1859) continues to spread in southern Europe: new records for Italy (Lepidoptera Pyraloidea Crambidae). Redia, 96, 51–55.
  6. Benson, A. R., & Morgenroth, J. (2019). Root pruning negatively affects tree value: a comparison of tree appraisal methods. Urban Forestry and Urban Greening, 43, 126376. DOI: https://doi.org/10.1016/j.ufug.2019.126376
  7. Bernatzky, A. (1978). Tree ecology and preservation. New York, U.S, Elsevier Scientific Publishing Company.
  8. Biocca, M., Gallo, P., Di Loreto, G., Imperi, G., Pochi, D., & Fornaciari, L. (2019). Noise attenuation provided by hedges. Journal of Agricultural Engineering, 50(3), 113–119. DOI: https://doi.org/10.4081/jae.2019.889
  9. Biondi, D., Scali, E., Capretti, P., Fratini, F., Benedetti, M., Aglietti, C., Marchi, G., & Ghelardini, L. (2022). An emerging disease challenges the use of cherry laurel (Prunus laurocerasus L.) as a hedge plant in urban and periurban landscapes. Journal of Plant Pathology, 104, 1207–1280.
  10. Blanusa, T., Garratt, M., Cathcart-James, M., Hunt, L., & Cameron, R. W. F. (2019). Urban hedges: A review of plant species and cultivars for ecosystem service delivery in north-west Europe. Urban Forestry and Urban Greening, 44, 126391. DOI: https://doi.org/10.1016/j.ufug.2019.126391
  11. Cetin, N. I., Bourget, G., & Tezer, A. (2021). Travel-cost method for assessing the monetary value of recreational services in the Ömerli Catchment. Ecological Economics, 190, 107192. DOI: https://doi.org/10.1016/j.ecolecon.2021.107192
  12. Chintantya, D., & Maryono, M. (2018). Comparing value of urban green space using contingent valuation and travel cost methods. E3S Web of Conferences, 31, 07008. DOI: https://doi.org/10.1051/e3sconf/20183107008
  13. Council of Tree and Landscape Appraisers (2018). Guide for Plant Appraisal, 10th Edition. Atlanta, International Society of Aboriculture, ISBN 1943378029.
  14. Doick, K. J., Neilan, C., Jones, G., Allison, A., McDermott, I., Tipping, A., & Haw, R. (2018). CAVAT (Capital Asset Value for Amenity Trees): valuing amenity trees as public assets. Arboricultural Journal, 40 (2), 67–91.
  15. EEA (2018). Urban Green Infrastructure, 2018. Available at: https://www.eea.europa.eu/data-and-maps/dashboards/urban-green-infrastructure-2018 (accessed 22 January 2024).
  16. Elmqvist, T., Setälä, H., Handel, S. N., van der Ploeg, S., Aronson, J., Blignaut, J. N., Gòmez-Baggethun, E., Nowak, D. J., Kronenberg, J., & de Groot, R. (2015). Benefits of restoring ecosystem services in urban areas. Current Opinion in Environmental Sustainability, 14, 101–108. DOI: https://doi.org/10.1016/j.cosust.2015.05.001
  17. Endreny, T. A. (2018). Strategically growing the urban forest will improve our world. Nature Communications, 9(1), 1160. DOI: https://doi.org/10.1038/s41467-018-03622-0
  18. Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environmental Pollution, 159 (8-9), 2078–2087. DOI: https://doi.org/10.1016/j.envpol.2011.01.010
  19. Ferracini, C., Pogolotti, C., Mancardi, P., Miglio, M., Bonelli, S., & Barbero, F. (2022). The box tree moth: an invasive species severely threatening buxus natural formation in NW Italy. Forests, 13(2), 178. DOI: https://doi.org/10.3390/f13020178
  20. Flook, R. (1996). A Standard Tree Evaluation Method (STEM). Tahunanui, Nelson, New Zealand.
  21. Francoeur, X. W., Dagenais, D., Paquette, A., Dupras, J., & Messier, C. (2021). Complexifying the urban lawn improves heat mitigation and arthropod biodiversity. Urban Forestry and Urban Greening, 60, 127007. DOI: https://doi.org/10.1016/j.ufug.2021.127007
  22. García-Ventura, C., Bermejo, A., González-García, C., Ángeles Grande-Ortíz, M., Ayuga-Téllez, E., De Medina-Garrido, Á. S., & Ramírez-Montoro, J. J. (2020). Analysis of differences in the choice of the economic value of urban trees in Madrid when displayed in situ and in photographs. Agronomy, 10(2), 311. DOI: https://doi.org/10.3390/agronomy10020311
  23. Ghafari, S., Kaviani, B., Sedaghathoor, S., & Sadegh Allahyari, M. (2020). Ecological potentials of trees, shrubs and hedge species for urban green spaces by multi criteria decision making. Urban Forestry and Urban Greening, 55, 126824. DOI: https://doi.org/10.1016/j.ufug.2020.126824
  24. Grilli, G., Barbierato, E., Capecchi, I., & Sacchelli, S. (2022). Application of stated-preferences methods and neuroscience for the valuation of dynamicity in forest cultural ecosystem services. Journal of Environmental Planning and Management, 65(3), 398–417. DOI: https://doi.org/10.1080/09640568.2021.1885354
  25. Gullino, M. L., Bertetti, D., & Garibaldi, A. (2021). Fungal and bacterial diseases on ornamental trees, shrubs, hedges and climbing plants detected in the last 20 years in northern Italy. Acta Horticulturae, 1331, 311–318. DOI: https://doi.org/10.17660/ActaHortic.2021.1331.41
  26. Hansford, K. M., Fonville, M., Gillingham, E. L., Coipan, E. C., Pietzsch, M. E., Krawczyk, A. I., Vaux, A. G. C., Cull, B., Sprong, H., & Medlock, J. M. (2017). Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England Ticks and Tick-borne. Diseases, 8(3), 353–361. DOI: https://doi.org/10.1016/j.ttbdis.2016.12.009
  27. Helliwell, R. (2008). Amenity valuation of trees and woodlands. Arboricultural Journal, 31(3), 161–168. DOI: https://doi.org/10.1080/03071375.2008.9747532
  28. Herath, P., & Bai X., (2024). Benefits and co-benefits of urban green infrastructure for sustainable cities: six current and emerging themes. Sustainability Science, 19, 1039–1063. DOI: https://doi.org/10.1007/s11625-024-01475-9
  29. Heuch, J. (2020). Re: CAVAT (Capital Asset Value for Amenity Trees): valuing amenity trees as public assets. Arboricultural Journal, 40(2), 67–91. DOI: https://doi.org/10.1080/03071375.2018.1454077
  30. Höpfl, L., Sunguroğlu Hensel, D., Hensel, M., & Ludwig, F. (2021). Initiating research into adapting rural hedging techniques, hedge types, and hedgerow networks as novel urban green systems. Land, 10(5), 529. DOI: https://doi.org/10.3390/land10050529
  31. Kim, H., Shoji, Y., Tsuge, T., Aikoh, T., & Kuriyama, K. (2021). Understanding recreation demands and visitor characteristics of urban green spaces: A use of the zero-inflated negative binomial model. Urban Forestry and Urban Greening, 65, 127332. DOI: https://doi.org/10.1016/j.ufug.2021.127332
  32. Kodati, S., Allan-Perkins, E., Cowles, R., & LaMondia, J. (2023). Effect of temperature, leaf wetness period, and cultivar susceptibility on boxwood blight disease development and sporulation. Plant Disease, 107(1), 142–148. DOI: https://doi.org/10.1094/PDIS-05-22-1022-RE
  33. Kong, F., Yin, H., & Nakagoshi, N. (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: a case study in Jinan City, China. Landscape and Urban Planning, 79(3-4), 240–252. DOI: https://doi.org/10.1016/j.landurbplan.2006.02.013
  34. Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. DOI: https://doi.org/10.1109/21.256541
  35. Lamhamedi, H., Lizin, S., Witters, N., Malina, R., & Baguare, A. (2021). The recreational value of a peri-urban forest in Morocco. Urban Forestry and Urban Greening, 65, 127339. DOI: https://doi.org/10.1016/j.ufug.2021.127339
  36. Lampinen, J., García-Antúnez, O., Lechner, A. M., Olafsson, A. S., Gulsrud, N. M., & Raymond, C. M. (2023). Mapping public support for urban green infrastructure policies across the biodiversity-climate-society-nexus. Landscape and Urban Planning, 239, 104856. DOI: https://doi.org/10.1016/j.landurbplan.2023.104856
  37. La Notte, A., D’Amato, D., Mäkinen, H., Paracchini, M. L., Liquete, C., Egoh, B., Geneletti, D., & Crossman, N. D. (2017). Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecological Indicators, 74, 392–402. DOI: https://doi.org/10.1016/j.ecolind.2016.11.030
  38. Loram, A., Warren, P. H., & Gaston, K. J. (2008). Urban domestic gardens (XIV): the characteristics of gardens in five cities. Environmental Management, 42(3), 361–376. DOI: https://doi.org/10.1007/s00267-008-9097-3
  39. Ma, N., He, X., Shi, X., & Chen, W. (2011). Assessment of urban forest economic benefits based on i-Tree model: Research progress. Chinese Journal of Ecology, 30(4), 810–817.
  40. Majumdar, S., Deng, J., Zhang, Y., & Pierskalla, C. (2011). Using contingent valuation to estimate the willingness of tourists to pay for urban forests: a study in Savannah, Georgia. Urban Forestry and Urban Greening, 10(4), 275–280. DOI: https://doi.org/10.1016/j.ufug.2011.07.006
  41. Marchi, G., Cinelli, T., & Surico, G. (2011). Bacterial leaf spot caused by the quarantine pathogen Xanthomonas arboricola pv. pruni on cherry laurel in central Italy. Plant Disease, 95(1), 74. DOI: https://doi.org/10.1094/PDIS-07-10-0529
  42. McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S., Houghton, R. A., Jackson, R. B., Morrison, J. F., Murray, B. C., Pataki, D. E., & Skog, K. E. (2011). A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications, 21(6), 1902–1924. DOI: https://doi.org/10.1890/10-0697.1
  43. Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-being: Synthesis. Washington, DC, Island Press.
  44. Montgomery, I., Caruso, T., & Reid, N. (2020). Hedgerows as ecosystems: service delivery, management, and restoration. Annual Review of Ecology, Evolution, and Systematics, 51(1), 81–102. DOI: https://doi.org/10.1146/annurev-ecolsys-012120-100346
  45. Moore, G. M., & Arthur, T. (1992). Amenity tree evaluation: a revised method. In Arthur, T. (Ed.). The Scientific Management of Plants in the Urban Environment. Proceedings of the Burnley Centenary Conference (pp. 166-171). Melbourne, Australia, Centre for Urban Horticulture.
  46. Morpurgo, J., Remme, R. P., & Van Bodegom, P. M. (2023). CUGIC: the Consolidated Urban Green Infrastructure Classification for assessing ecosystem services and biodiversity. Landscape and Urban Planning, 234, 104726. DOI: https://doi.org/10.1016/j.landurbplan.2023.104726
  47. Myronchuk, K., Henyk, Y., & Kurnytska, M. (2021). Species composition, structure and quality status of hedges in bukovynian carpathian region of Ukraine. Forestry Ideas, 27(1), 74–88.
  48. Neilan, C. (2017). CAVAT (Capital Asset Value for Amenity Trees) full method: users’ guide. Available at: https://www.southampton.gov.uk/moderngov/documents/s15821/Members%20Room%20Document%202.pdf (accessed 22 January 2024).
  49. Nicese, F. P., Colangelo, G., Comolli, R., Azzini, L., Lucchetti, S., Marziliano, P. A., & Sanesi, G. (2021). Estimating CO2 balance through the Life Cycle Assessment prism: A case – Study in an urban park. Urban Forestry and Urban Greening, 57, 126869. DOI: https://doi.org/10.1016/j.ufug.2020.126869
  50. Notaro, S., & De Salvo, M. (2010). Estimating the economic benefits of the landscape function of ornamental trees in a sub-Mediterranean area. Urban Forestry and Urban Greening, 9, 71–81. DOI: https://doi.org/10.1016/j.ufug.2009.09.001
  51. Peták, M., Görner, T., Brožová, H., & Houška, M. (2022). Compensating for the loss of future tree values in the model of Fuzzy knowledge units. Urban Forestry and Urban Greening, 74, 127627. DOI: https://doi.org/10.1016/j.ufug.2022.127627
  52. Pinto, L. V., Inácio, M., Ferreira, C. S. S., Ferreira, A. D., & Pereira, P. (2022). Ecosystem services and well-being dimensions related to urban green spaces – A systematic review. Sustainable Cities and Society, 85, 104072. DOI: https://doi.org/10.1016/j.scs.2022.104072
  53. Pirani, A., & Fabbri, M. (1988). La stima del valore di piante arboree ornamentali. Genio Rurale, 4, 5–11.
  54. Polelli, M. (2008). Nuovo trattato di estimo. Santarcangelo di Romagna, Maggioli Editore.
  55. Ponce-Donoso, M., Vallejos-Barra, Ó., & Escobedo, F. J. (2017). Appraisal of urban trees using twelve valuation formulas and two appraiser groups. Arboriculture and Urban Forestry, 43(2), 72–82. DOI: https://doi.org/10.48044/jauf.2017.007
  56. Price, C. (2003). Quantifying the aesthetic benefits of urban forestry. Urban Forestry and Urban Greening, 1(3), 123–133. DOI: https://doi.org/10.1078/1618-8667-00013
  57. Qadir, Z. J., Hadley, J., Breeze, T., & Blanusa, T. (2021). Potential of urban roadside hedges for particulate matter removal - importance of species choice, and its economic impact. Acta Horticulturae, 1331, 139–144. DOI: https://doi.org/10.17660/ActaHortic.2021.1331.19
  58. Quaglia, M., Moretti, C., & Buonaurio, R. (2014). Molecular characterization of Diplodia seriata, a new pathogen of Prunus laurocerasus in Italy. Phytoparasitica, 42(2), 189–197. DOI: https://doi.org/10.1007/s12600-013-0350-9
  59. Rakotonarivo, O. S., Schaafsma, M., & Hockley, N. (2016). A systematic review of the reliability and validity of discrete choice experiments in valuing non-market environmental goods. Journal of Environmental Management, 183 (1), 98–109. DOI: https://doi.org/10.1016/j.jenvman.2016.08.032
  60. Randrup, T. B. (2005). Development of a Danish model for plant appraisal. Journal of Arboriculture, 31(3), 114–123. DOI: https://doi.org/10.48044/jauf.2005.014
  61. Roeland, S., Moretti, M., Amorim, J. H., Branquinho, C., Fares, S., Morelli, F., Niinemets, Ü., Paoletti, E., Pinho, P., Sgrigna, G., Stojanovski, V., Tiwary, A., Sicard, P., & Calfapietra, C. (2019). Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry Research, 30(6), 1981–1996. DOI: https://doi.org/10.1007/s11676-019-00916-x
  62. Roy, S., Byrne, J., & Pickering, C. (2012). A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry and Urban Greening, 11(4), 351–363. DOI: https://doi.org/10.1016/j.ufug.2012.06.006
  63. Saaty, T.L. (1990). Decision Making for Leaders – The Analytic Hierarchy Process for Decisions in a Complex World. Pittsburgh, RWS Publishing.
  64. Sacchelli, S., & Favaro, M. (2019). A virtual-reality and soundscape-based approach for assessment and management of cultural ecosystem services in urban forest. Forests, 10(9), 731. DOI: https://doi.org/10.3390/f10090731
  65. Salmond, J. A., Tadaki, M., Vardoulakis, S., Arbuthnott, K., Coutts, A., Demuzere, M., Dirks, K. N., Heaviside, C., Lim, S., MacIntyre, H., McInnes, R. N., & Wheeler, B. W. (2016). Health and climate related ecosystem services provided by street trees in the urban environment. Environmental Health, 15, 95–111. DOI: https://doi.org/10.1186/s12940-016-0103-6
  66. Santiago, J.-L., Rivas, E., Sanchez, B., Buccolieri, R., Esposito, A., Martilli, A., Vivanco, M. G., & Martin, F. (2022). Impact of different combinations of green infrastructure elements on traffic-related pollutant concentrations in urban areas. Forests, 13(8), 1195. DOI: https://doi.org/10.3390/f13081195
  67. Sardaro, R., Panio, D., Fucilli, V., Bozzo, F., & Acciani, C. (2017). Il valore ornamentale dell’albero: proposta metodologica per un nuovo percorso valutativo. Aestimum, 70, 75–95.
  68. Sing, K.-W., Jusoh, W. F. A., Hashim, N. R., & Wilson, J.-J. (2016). Urban parks: refuges for tropical butterflies in Southeast Asia? Urban Ecosystems, 19(3), 1131–1147. DOI: https://doi.org/10.1007/s11252-016-0542-4
  69. Tan, S.-H., & Zhao, W.-M. (2007). Social and psychological benefit of urban green space. Journal of Chongqing Jianzhu University, 29(5), 6–10.
  70. Train, K.E. (2003). Discrete choice methods with simulation. Cambridge, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511753930
  71. Tran, P. T. M., Kalairasan, M., Beshay, P. F. R., Qi, Y., Ow, L. F., Govindasamy, V., Yusof, M. L. M., Ghosh, S., & Balasubramanian, R. (2022). Nature-based solution for mitigation of pedestrians’ exposure to airborne particles of traffic origin in a tropical city. Sustainable Cities and Society, 87, 104264. DOI: https://doi.org/10.1016/j.scs.2022.104264
  72. Todorova, A., Asakawa, S., & Aikoh, T. (2004). Preferences for and attitudes towards street flowers and trees in Sapporo, Japan. Landscape and Urban Planning, 69(4), 403–416. DOI: https://doi.org/10.1016/j.landurbplan.2003.11.001
  73. Tugnoli, M. (2012). Valore economico degli alberi. Milano, Wolters Kluwer Italia.
  74. Turner, K. R., Pearce, D. W., & Bateman, I. (1993). Environmental economics – An elementary introduction. The John Hopkins University Press, Baltimore, Maryland.
  75. Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landscape and Urban Planning, 81(3), 167–178. DOI: https://doi.org/10.1016/j.landurbplan.2007.02.001
  76. USDA (2022). i-Tree-Eco User’s Manual v.4.1.0. Available at: https://www.itreetools.org/documents/250/i-Tree%20Eco%20Users%20Manual.pdf (Accessed 21 January 2024).
  77. Varshney, C. K., & Mitra, I. (1993). Importance of hedges in improving urban air quality. Landscape and Urban Planning, 25(1-2), 85–93. DOI: https://doi.org/10.1016/0169-2046(93)90124-V
  78. Vettraino, A. M., Tomassini, A., Dalla Valle, M., Liberati, D., De Angelis, P., & Vannini, A. (2016). First report of Phytophthora cryptogea causing root rot on cherry laurel plants in Central Italy. Plant Disease, 100(5), 1025. DOI: https://doi.org/10.1094/PDIS-11-15-1267-PDN
  79. Xu, H., & Zhao, G. (2021). Assessing the value of urban green infrastructure ecosystem services for high-density urban management and development: Case from the capital core area of Beijing, China. Sustainability, 13(21), 12115. DOI: https://doi.org/10.3390/su132112115
  80. Yenneti, K., Ding, L., Prasad, D., Ulpiani, G., Paolini, R., Haddad, S., & Santamouris, M. (2020). Urban overheating and cooling potential in Australia: an evidence-based review. Climate, 8(11), 126. DOI: https://doi.org/10.3390/cli8110126
  81. Wang, Y., Bakker, F., De Groot, R., & Wörtche, H. (2014). Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Building and Environment, 77, 88–100. DOI: https://doi.org/10.1016/j.buildenv.2014.03.021
  82. Watson, G. (2002). Comparing formula methods of tree appraisal. Journal of Arboriculture, 28(1), 11–18. DOI: https://doi.org/10.48044/jauf.2002.002
  83. Zanzi, A., Andreotti, F., Vaglia, V., Alali, S., Orlando, F., & Bocchi, S. (2021). Forecasting agroforestry ecosystem services provision in urban regeneration projects: Experiences and perspectives from Milan. Sustainability, 13(5), 1–18. DOI: https://doi.org/10.3390/su13052434
  84. Zhang, Y., & Dong, R. (2018). Impacts of street-visible greenery on housing prices: Evidence from a hedonic price model and a massive street view image dataset in Beijing. ISPRS International Journal of Geo-Information, 7(3), 104. DOI: https://doi.org/10.3390/ijgi7030104
  85. Zhang, X., Ni, Z., Wang, Y., Chen, S., & Xia, B. (2020). Public perception and preferences of small urban green infrastructures: a case study in Guangzhou, China. Urban Forestry and Urban Greening, 53, 126700. DOI: https://doi.org/10.1016/j.ufug.2020.126700
  86. Zhang, L., Chen, P., & Hui, F. (2022). Refining the accessibility evaluation of urban green spaces with multiple sources of mobility data: a case study in Shenzhen, China. Urban Forestry and Urban Greening, 70, 127550. DOI: https://doi.org/10.1016/j.ufug.2022.127550