Vol. 29 No. 1 (2025): BEYOND DECARBONIZATION toward a Climate Neutral urban environment
Research and Experimentation

Natural fibre sourcing for textile architecture

Ilaria Pugliese
Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, Italia
Samica Sadik
Department of Craft Studies, Faculty of Educational Sciences, University of Helsinki, Finland
Alessandra Zanelli
Dipartimento di Architettura, Ingegneria delle Costruzioni e Ambiente Costruito, Politecnico di Milano, Italia

Published 2025-07-31

Keywords

  • Natural fibres,
  • Bast fibres,
  • Textile architecture,
  • Localized production,
  • Supply chain development

How to Cite

Pugliese, I., Sadik, S., & Zanelli, A. (2025). Natural fibre sourcing for textile architecture. TECHNE - Journal of Technology for Architecture and Environment, 29(1), 289–298. https://doi.org/10.36253/techne-16594

Abstract

Local resources can provide industrial production opportunities to improve processes while enhancing biodiversity and the use of raw materials. This research profiles currently underused bast plant fibres for environmentally sound textile applications in architecture – a sector heavily reliant on non-renewable resources – by comparing their technical properties and environmental impacts to support material selection. It also reconstructs production scenarios by evaluating fibre material typologies, their processability in textile-based building materials, and the existing fibre processing and textile manufacturing infrastructure.

Downloads

Download data is not yet available.

References

  1. Alex, R., Kessler, R., Kohler, R., Mayer, G. and Tubach, M. (2005), “Sustainability and Profitability Through Intelligent Value Chain Management in Bast Fibre Processing”, J. Nat. Fibers, Vol. 1, pp. 67-75. Available at: https://doi.org/10.1300/J395v01n03_04.
  2. Bacci, L., Baronti, S., Predieri, S. and Di Virgilio, N. (2009), “Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy”, Ind. Crops Prod., Vol. 1, pp. 480-84. Available at: https://doi.org/10.1016/j.indcrop.2008.09.005.
  3. Bacci, L., Di Lonardo, S., Albanese, L., Mastromei, G. and Perito, B. (2011), “Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.)”, Text. Res. J., Vol. 81, pp. 827-37. Available at: https://doi.org/10.1177/0040517510391698.
  4. Black Mountain Insulation Limited (2014), “NatuHemp”. Available at: https://www.blackmountaininsulation.com/NatuHemp_Technical_Sheet.pdf (Accessed on 28/11/2024).
  5. Bodros, E. and Baley, C. (2008), “Study of the tensile properties of stinging nettle fibres (Urtica dioica)”, Mater. Lett., Vol. 62, pp. 2143-45. Available at: https://doi.org/10.1016/j.matlet.2007.11.034.
  6. Chawla, K.K. (2001), “Glass fibers”, in Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J. and Mahajan, S. (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, UK, pp. 3541–3545. Available at: https://doi.org/10.1016/b0-08-043152-6/00630-6.
  7. CORDIS European Commission (2011), “BioBuild. High Performance, Economical and Sustainable Biocomposite Building Materials”. Available at: https://cordis.europa.eu/project/id/285689/it (Accessed on 28/11/2024).
  8. CORDIS European Commission (2018), “ORTIKA. Toward sustainable fashion: nettle and blueberry garments to promote sustainable development of mountain areas and to boost young talents”. Available at: https://cordis.europa.eu/project/id/836019/it (Accessed on 28/11/2024).
  9. De Giuli, I. and Ferrari, R. (2013), “Flexible Composite Materials: Production and Modern Uses of a Polymorphic Material”, in Motro, R. (Ed.), Flexible Composite Materials, Birkhäuser, pp. 8-25. Available at: https://doi.org/10.1515/9783034613507.8.
  10. Dreyer, J., Müssig, J., Koschke, N., Ibenthal, W.D. and Harig, H. (2002), “Comparison of Enzymatically Separated Hemp and Nettle Fibre to Chemically Separated and Steam Exploded Hemp Fibre”, J. Ind. Hemp, Vol. 7, pp. 43-59. Available at: https://doi.org/10.1300/J237v07n01_05
  11. FAOSTAT (2022), “Crops and livestock products: Production & Trade”. Available at: https://www.fao.org/faostat/en/#data (Accessed on 06/09/2024).
  12. International Trade Centre (2023), “List of products at 4 digits level exported by Italy in 2023”. Available at: https://www.trademap.org/index.aspx (Accessed on 06/09/2024).
  13. ISO 20887:2020, “Sustainability in Buildings and Civil Engineering Works. Design for Disassembly and Adaptability. Principles, requirements and guidance”.
  14. ISOLINA (2020), “Flax insulation products”. Available at: https://www.isolina.com/gb/IsolinaBrochureENG.pdf (Accessed on 28/11/2024).
  15. ISTAT (2022), “Produzione industriale in quantità e valore”. Available at: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_PRODCOM (Accessed on 06/09/2024).
  16. ISTAT (2023), “Coltivazioni industriali”. Available at: http://dati.istat.it/Index.aspx?QueryId=3370 (Accessed on 28/11/2024).
  17. Jeannin, T., Yung, L., Evon, P., Labonne, L., Ouagne, P., Lecourt, M., Cazaux, D., Chalot, M. and Placet, V. (2020), “Are nettle fibers produced on metal-contaminated lands suitable for composite applications?”, Mater. Today Proc., Vol. 31, pp. S291-95. Available at: https://doi.org/10.1016/j.matpr.2020.01.365.
  18. LaMMA-Test (2007a), “Manuale di coltivazione e prima lavorazione della canapa da fibra”. Available at: https://agronotizie.imagelinenetwork.com/materiali/Varie/File/Mario_Rosato/Manuale-coltivazione-prima-lavorazione-canapa-.pdf (Accessed on 06/09/2024).
  19. LaMMA-Test (2007b), “Manuale di coltivazione e prima lavorazione dell’ortica per uso tessile”. Available at: https://agronotizie.imagelinenetwork.com/materiali/Varie/File/Mario_Rosato/manuale-di-coltivazione-e-prima-lavorazione-dell-ortica-per-uso-tessile.pdf (Accessed on 06/09/2024).
  20. Masella, P., Angeloni, G. and Galasso, I. (2024), “Cropping Flax for Grain and Fiber: A Case-Study from Italy”, Biomass, Vol. 4, pp. 599–609. Available at: https://doi.org/10.3390/biomass4020032
  21. Mather, R.R. and Wardman, R.H. (2015), The Chemistry of Textile Fibres, Royal Society of Chemistry, Cambridge. Available at: https://doi.org/10.1039/9781782626534.
  22. Mazzola, C. (2020), “Ultra-lightweight temporary architecture. Defining new minimal mass and efficiency-oriented design strategies through an experimental approach”, PhD Thesis in Technology of Architecture, Politecnico di Milano. Available at: https://hdl.handle.net/10589/166633.
  23. Ouagne, P., Soulat, D., Evon, P., Renouard, S., Ferreira, M., Labonne, L., Labanieh, A.R., Laine, E. and De Luycker, E. (2020), “Use of bast fibres including flax fibres for high challenge technical textile applications. Extraction, preparation and requirements for the manufacturing of composite reinforcement fabrics and for geotextiles”, in Kozłowski, R.M. and Mackiewicz-Talarczyk, M. (Eds.), Handbook of Natural Fibres. Volume 2: Processing and Applications, Woodhead Publishing, pp. 169-204. Available at: https://doi.org/10.1016/B978-0-12-818782-1.00005-5.
  24. Pérez, M., Guo, Y. and Knippers, J. (2022), “Integrative material and structural design methods for natural fibres filament-wound composite structures: The LivMatS pavilion”, Mater. Des., Vol. 217, 110624. Available at: https://doi.org/10.1016/j.matdes.2022.110624.
  25. Registro aziende (2024), “Elenco aziende con fatturato per il codice ATECO 13.95 & 13.96.2”. Available at: https://registroaziende.it/ricerca-ateco (Accessed on 06/09/2024).
  26. Reyneri, A., Abbate, V., Casa, R., Cavallero, A., Copani, V., Davì, A., De Mastro, G., Fila, G., Fontana, F., Furnari, G., Lombardo, V., Losavio, N., Marras, G., Marzi, V., Rondi, G., Rossini, F., Scarpa, G. and Ventrella, D. (2001) “Produzione, qualità e analisi della filiera produttiva del lino da fibra in Italia”, Rivista di agronomia, Vol. 35 (4), pp. 230-239. Available at: https://www.researchgate.net/publication/43784601_Produzione_qualita_e_analisi_della_filiera_produttiva_del_lino_da_fibra_in_Italia (Accessed on 28/11/2024).
  27. Sadik, S.A. (2019), “Production of Nettle (Urtica dioica), environmental and economic valuation in conventional farming”. Master Thesis in Agricultural Economics, University of Helsinki. Available at: http://hdl.handle.net/10138/306173 (Accessed on 28/11/2024).
  28. Stolarski, M. J., Krzyżaniak, M., Kwiatkowski, J., Tworkowski, J. and Szczukowski, S. (2018), “Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland”, Energy, Vol. 150, pp. 770-780. Available at: https://doi.org/10.1016/j.energy.2018.03.021.
  29. Zanelli, A., Monticelli, C. and Viscuso, S. (2020), “Closing the Loops in Textile Architecture: Innovative Strategies and Limits of Introducing Biopolymers in Membrane Structures”, in Della Torre, S., Cattaneo, S., Lenzi, C. and Zanelli, A. (Eds.), Regeneration of the Built Environment from a Circular Economy Perspective, Springer, pp. 263-76. Available at: https://doi.org/10.1007/978-3-030-33256-3_25.