Vol. 83 (2023)
Special Issue - Visions of the future in real estate appraisal

Exploring farmland price determinants in Northern Italy using a spatial regression analysis

Laura Giuffrida
Department of Agriculture, Food and Environment, University of Catania
Maria De Salvo
Department of Veterinary Sciences, University of Messina
Andrea Manarin
Department of Land, Environment, Agriculture and Forestry, University of Padova
Damiano Vettoretto
Department of Land, Environment, Agriculture and Forestry, University of Padova
Tiziano Tempesta
Department of Land, Environment, Agriculture and Forestry, University of Padova

Published 2024-04-22

Keywords

  • rural real estate market analysis,
  • farmland value,
  • spatial lag of X (SLX) model,
  • Treviso (Italy)

Abstract

Using spatial regression models, we detect determinants of farmland’s prices in a rural area located in the upper Treviso plain (Veneto region, Italy). Econometric analysis is based on a Spatial linear regression model able to account for spatial lags in the data. Estimates show which intrinsic and extrinsic characteristics have the greatest influence on price, and how buyers and sellers’ profiles also matter on the price determination. Our application fosters spatial regression models in rural real estate market analysis and appraisal, and highlights that in the area under study the farmland’s prices are significantly affected by factors that are rarely considered in the literature, such as sellers and buyers’ profiles, the land use in the context where the sold plot is located matters, the hydraulic risk of the area and the presence of large infrastructures.

References

  1. Abelairas-Etxebarria, P., & Astorkiza, I. (2012). Farmland prices and land-use changes in periurban protected natural areas. Land Use Policy, 29, 674–683. DOI: https://doi.org/10.1016/j.landusepol.2011.11.003
  2. Bastian, C., McLeod, D., Germino, M., Reiners, W., & Blasko, B. (2002). Environmental amenities and agricultural land values: a hedonic model using Geographic Information Systems data. Ecological Economics, 40, 337–349. DOI: https://doi.org/10.1016/S0921-8009(01)00278-6
  3. Bourassa, S., Hoesli, M., & Sun, J. (2005). The price of aesthetic externalities. Journal of Real Estate Literature, 13(2), 165–188. DOI: https://doi.org/10.1080/10835547.2005.12090160
  4. Colyer, D. (1978). Socio-Economic Determinants of Rural Land Values in Greenbrier County, West Virginia. Journal of the Northeastern Agricultural Economics Council, 7(2), 75–77. DOI: https://doi.org/10.1017/S0163548400002193
  5. Cotteleer G., Gardebroek C., & Luijt, J. (2008). Market power in a GIS-based hedonic price model of local farmland markets. Land Economics, 84(4), 573–592. DOI: https://doi.org/10.3368/le.84.4.573
  6. Delbecq, B.A., Kuethe, T.H., & Borchers, A.M. (2014). Identifying the extent of the urban fringe and its impact on agricultural land values. Land Economics, 90(4), 587–600. DOI: https://doi.org/10.3368/le.90.4.587
  7. De Noni, I., Ghidoni, A., Menzel, F., Bahrs, E., & Corsi, S. (2019). Exploring drivers of farmland value and growth in Italy and Germany at regional level. Aestimum, 74, 77–99.
  8. Devadoss, S., & Manchu, V. (2007). A comprehensive analysis of farmland value determination: a county-level analysis. Applied Economics, 39(18), 2323–2330. DOI: https://doi.org/10.1080/00036840600675687
  9. Drescher, K., Henderson, J., & McNamara, K.T. (2001). Farmland Prices Determinants. In American Agricultural Economics Association Annual Meeting, August 5-8, 2001, Chicago, Illinois.
  10. Drukker, D. M., Prucha, I.R., & Raciborski, R. (2013). Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances. The Stata Journal, 13(2), 221–241. DOI: https://doi.org/10.1177/1536867X1301300201
  11. Elhorst, J.P. (2010). Applied spatial econometrics: raising the bar. Spatial Economic Analysis, 5(1), 9–28. DOI: https://doi.org/10.1080/17421770903541772
  12. Elhorst, J.P (2014). Spatial econometrics: from cross-sectional data to spatial panels. Heidelberg, Springer. DOI: https://doi.org/10.1007/978-3-642-40340-8
  13. Elhorst, J.P. (2017). Spatial Panel Data Analysis. Encyclopedia of GIS, 2, 2050–2058. DOI: https://doi.org/10.1007/978-3-319-17885-1_1641
  14. Elhorst, J.P., & Halleck Vega, S.M. (2017). The SLX model: extensions and the sensitivity of spatial spillovers to W. Papeles de Economía Española, 152, 34–50.
  15. Ervin, D.E., & Mill, J.W. (1985). Agricultural land markets and soil erosion: policy relevance and conceptual issues. American Journal of Agricultural Economics, 67(5), 938–942. DOI: https://doi.org/10.2307/1241350
  16. Faux J., & Perry G.M. (1999). Estimating irrigation water value using hedonic price analysis: a case study in Malheur County, Oregon. Land Economics, 75(3), 440–452. DOI: https://doi.org/10.2307/3147189
  17. Floch, J.M., & Le Saout, R. (2018). Spatial econometrics-common models. Handbook of spatial analysis: Theory and practical application with R, 149–177.
  18. Florax, R.J.G.M., & Rey, S. (1995). The impacts of misspecified spatial interaction in linear regression models. In Anselin, L., & Florax, R.J.G.M. (Eds.). New directions in spatial econometrics. Advances in Spatial Science. Berlin, Heidelberg, Springer, pp. 111–135. DOI: https://doi.org/10.1007/978-3-642-79877-1_5
  19. Géniaux, G., Ay, J.-S., & Napoléone, C. (2011). A spatial hedonic approach on land use change anticipations. Journal of Regional Science, 51(5), 967–986. DOI: https://doi.org/10.1111/j.1467-9787.2011.00721.x
  20. Gibbons, S., & Overman, H.G. (2012). Mostly pointless spatial econometrics?. Journal of Regional Science, 52(2), 172–191. DOI: https://doi.org/10.1111/j.1467-9787.2012.00760.x
  21. Guiling, P., Brorsen, W.B., & Doye, D. (2009). Effect of urban proximity on agricultural land values. Land Economics, 85(2), 252–264. DOI: https://doi.org/10.3368/le.85.2.252
  22. Hilal, M., Martin, E., & Piguet, V. (2016). Prediction of the purchase cost of agricultural land: the example of Côte-d’Or, France. Land Use Policy, 52, 464–476. DOI: https://doi.org/10.1016/j.landusepol.2016.01.005
  23. Jaeger, W., Plantinga, A., & Grout, C. (2012) How has Oregon’s land use planning system affected property values?, Land Use Policy, 62, 62–72. DOI: https://doi.org/10.1016/j.landusepol.2011.05.005
  24. Kopczewska, K. (2020). Applied spatial statistics and econometrics: data analysis in R. New York, Routledge. DOI: https://doi.org/10.4324/9781003033219
  25. Khalid, H. (2015). Spatial heterogeneity and spatial bias analyses in hedonic price models: some practical considerations. Bulletin of Geography. Socio–economic Series, 28, 113–129. DOI: https://doi.org/10.1515/bog-2015-0019
  26. King, S.A., & Schreiner, D.F. (2004). Hedonic Estimation of Southeastern Oklahoma Forestland Prices. In Southern Agricultural Economics Association Annual Meeting, February 14-18, 2004, Tulsa, Oklahoma.
  27. Kostov P. (2009). A spatial quantile regression hedonic model of agricultural land prices. Spatial Economic Analysis, 4(1), 53–72. DOI: https://doi.org/10.1080/17421770802625957
  28. Livanis, G., Moss, C.B., Breneman, V.E., & Nehring, R.F. (2006). Urban sprawl and farmland prices. American Journal of Agricultural Economics, 88(4), 915–929. DOI: https://doi.org/10.1111/j.1467-8276.2006.00906.x
  29. Ma, S., & Swinton, S.M. (2011). Valuation of ecosystem services from rural landscapes using agricultural land prices. Ecological Economics, 70, 1649–1659. DOI: https://doi.org/10.1016/j.ecolecon.2011.04.004
  30. Ma, S., & Swinton, S.M. (2012). Hedonic valuation of farmland using sale prices versus appraised values. Land Economics, 88(1), 1–15. DOI: https://doi.org/10.3368/le.88.1.1
  31. Maddison, D. (2009). A Spatio-temporal model of farmland values. Journal of Agricultural Economics, 60(1), 171–189. DOI: https://doi.org/10.1111/j.1477-9552.2008.00182.x
  32. Manski, C.F. (1993). Identification of endogenous social effects: the reflection problem. The Review of Economic Studies, 60(3), 531–542. DOI: https://doi.org/10.2307/2298123
  33. Perry, G.M., & Robinson, L.J. (2001). Evaluating the influence of personal relationships on land sale prices: a case study in Oregon. Land Economics, 77(3), 385–398 DOI: https://doi.org/10.2307/3147132
  34. Plantinga, A., Lubozski, R., & Stavins, R. (2002). The effects of potential land development on agricultural land prices. Journal of Urban Economics, 52, 561–581. DOI: https://doi.org/10.1016/S0094-1190(02)00503-X
  35. Regional Agency for Environmental Protection and Prevention - ARPAV (2008). Carta dei suoli della provincia di Treviso. Provincia di Treviso, Settore Ambiente e Pianificazione Territoriale. Available at: https://www.arpa.veneto.it/arpavinforma/pubblicazioni/carta-dei-suoli-della-provincia-di-treviso (accessed 11 January 2023).
  36. Sardaro, R., Bozzo, F., & Fucilli, V. (2018a). La stima dell’indennità per servitù di elettrodotto coattivo mediante uno studio del mercato fondiario in Puglia. Aestimum, 73, 219–237.
  37. Sardaro, R., Bozzo, F., & Fucilli, V., (2018b). High-voltage overhead transmission lines and farmland value: evidences from the real estate market in Apulia. Southern Italy. Energy Policy, 119, 449–457. DOI: https://doi.org/10.1016/j.enpol.2018.05.005
  38. Sardaro, R., La Sala, P., & Roselli L. (2020). How does the land market capitalize environmental, historical and cultural components in rural areas? Evidences from Italy. Journal of Environmental Management, 269, 110–776. DOI: https://doi.org/10.1016/j.jenvman.2020.110776
  39. Sardaro, R., De Pascale, G., Ingrao, C., & Faccilongo N. (2021). Latent relationships between environmental impacts of cultivation practices and land market: evidences from a spatial quantile regression analysis in Italy. Journal of Cleaner Production, 279, 123648. DOI: https://doi.org/10.1016/j.jclepro.2020.123648
  40. Sekáč, P., Šálek, M., Wranova, A., Kumble, P., & Sklenička, P. (2017). Effect of water features proximity on farmland prices in a landlocked country: the consequences for planning. Soil and Water Research, 12(1), 18–28. DOI: https://doi.org/10.17221/11/2016-SWR
  41. Sklenicka, P., Molnarova, K., Pixova, K.C., & Salek, M.E. (2013). Factors affecting farmland prices in the Czech Republic. Land Use Policy, 30(1), 130–136. DOI: https://doi.org/10.1016/j.landusepol.2012.03.005
  42. Snyder, S.A., Kilgore, M.A., Hudson, R., & Donnay, J. (2008). Influence of purchaser perceptions and intentions on price for forest land parcels: a hedonic pricing approach. Journal of Forest Economics, 14, 47–72. DOI: https://doi.org/10.1016/j.jfe.2007.04.002
  43. Tempesta, T. (2011), Un’analisi dei fattori che influenzano il valore dei rustici a destinazione residenziale nel Veneto. Aestimum, 58, 59–74.
  44. Tempesta, T., Foscolo, I., Nardin, N., & Trentin G. (2021). Farmland value in the “Conegliano Valdobbiadene Prosecco Superiore PGDO” area. An application of the Hedonic Pricing method. Aestimum, 78, 5–33 DOI: https://doi.org/10.36253/aestim-10826
  45. Tempesta, T., & Thiene, M. (1997). Agricultural land values and urban growth. Land Reform, Land Settlement and Cooperatives. Available at: http://www.fao.org/3/W6728T/w6728t04.htm#E11E2 (accessed 11 January 2023).
  46. Troncoso, J.L., Aguirre, M., Manriquez, P., Labarra, V., & Ormazábal Y. (2010). The influence of physical attributes on the price of land: the case of the province of Talca, Chile. Ciencia e Investigación Agraria, 37(3), 105–112. DOI: https://doi.org/10.4067/S0718-16202010000300009
  47. Tsoodle, L.J., Golden, B.B., & Featherstone, A.M. (2006). Factors influencing Kansas agricultural farm land values. Land Economics, 82(1), 124–139. DOI: https://doi.org/10.3368/le.82.1.124
  48. Tsutsumi, M., Shimada, A., & Murakami, D. (2011). Land price maps of Tokyo metropolitan area. Procedia-Social and Behavioral Sciences, 21, 193–202. DOI: https://doi.org/10.1016/j.sbspro.2011.07.046
  49. Uematsu, H., Khanal, A.R., & Mishra, A.K. (2013). The impact of natural amenity on farmland values: a quantile regression approach. Land Use Policy, 33, 151–160. DOI: https://doi.org/10.1016/j.landusepol.2012.12.007
  50. Varian, H.L. (2014). Intermediate Microeconomics. Ninth Edition. New York, London, W. W. Norton and Company.
  51. Xu, F., Mittelhammer, R., & Barkley, P. (1993). Measuring the contribution of site characteristics to the value of agricultural land. Land Economics, 69(4), 356–369. DOI: https://doi.org/10.2307/3146453